Numerical Investigation of the Progressive Collapse of the Reinforced Concrete Wall-Frame Structures Considering the Soil–Structure Interaction

Author:

Ekrami Kakhki Seyed Ali,Kheyroddin Ali,Mortezaei Alireza

Abstract

AbstractIn this essay, the progressive collapse resistance of the reinforced concrete wall-frame structures was evaluated with and without considering the soil–structure interaction. The vulnerability of the frames against progressive collapse was investigated with the middle column removal scenario from the first story, based on the sensitivity index. To evaluate the effects of soil–structure interaction, the wall-frame structures along with the soil (hard soil) and foundation were simultaneously modeled in FLAC software and compared with the frames in Seismostruct software. The results showed that the sensitivity index decreased by considering the soil–structure interaction in the wall-frame structures. Afterward, a parametric study of the structures (foundation thickness) and substructures (soil types, soil densities, soil saturation conditions and soil layers) was performed. The results showed that with an increase in thickness of the foundation, the sensitivity index increased, and therefore, the condition of the structure would be more critical against progressive collapse. It was found that high groundwater levels in the subsoil can reduce its bearing capacity and lead to the damage to the structure. In addition, it was determined that by changing the substructure soil type from type 4 (Clay-MC) to type 1 (Rock), the use of layer 1 (SM) and layer 2 (SM-CL/ML (Very hard clay)-SM), and the soils with high density, the condition of the structures is better to prevent progressive collapse.

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3