Abstract
AbstractThe dynamic response properties of concrete have been of interest during the use of buildings due to seismic, impact, and explosion events. The splitting Hopkinson lever is a classical device for testing the dynamic mechanical properties of materials. In this paper, dynamic splitting tests on concrete were conducted using it, and a time series predictive computational model for the incident, reflected and transmitted pulses of high-strength concrete specimens at high strain rates was developed, and the extension mechanism of splitting tensile cracks in high-strength concrete was detected and analyzed based on the DIC technique. The results show that: the peak strength of C60 specimens and C80 specimens increased by about 60% and 90%, respectively, from 0.05 MPa to 0.09 MPa in impact strength; the triangular damaged area at the end of the contact surface of the specimen and the rod subjected to high impact pressure increased significantly, the dynamic energy dissipation increased, and the damage degree of the specimens increased; under the action of high strain rate, the brittleness of the concrete specimens with higher strength increased, the damage rate The higher strength concrete specimens have increased brittleness, faster damage rate and higher crack extension under high strain rate. The results of the paper can provide important references for the design of buildings under impact loading.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
State Key Laboratory of High-Performance Civil Engineering Materials
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献