Investigation of the Deformation and Failure Characteristics of High-Strength Concrete in Dynamic Splitting Tests

Author:

Chen XudongORCID,Wu Jin,Shang Kai,Ning Yingjie,Bai Lihui

Abstract

AbstractThe dynamic response properties of concrete have been of interest during the use of buildings due to seismic, impact, and explosion events. The splitting Hopkinson lever is a classical device for testing the dynamic mechanical properties of materials. In this paper, dynamic splitting tests on concrete were conducted using it, and a time series predictive computational model for the incident, reflected and transmitted pulses of high-strength concrete specimens at high strain rates was developed, and the extension mechanism of splitting tensile cracks in high-strength concrete was detected and analyzed based on the DIC technique. The results show that: the peak strength of C60 specimens and C80 specimens increased by about 60% and 90%, respectively, from 0.05 MPa to 0.09 MPa in impact strength; the triangular damaged area at the end of the contact surface of the specimen and the rod subjected to high impact pressure increased significantly, the dynamic energy dissipation increased, and the damage degree of the specimens increased; under the action of high strain rate, the brittleness of the concrete specimens with higher strength increased, the damage rate The higher strength concrete specimens have increased brittleness, faster damage rate and higher crack extension under high strain rate. The results of the paper can provide important references for the design of buildings under impact loading.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

State Key Laboratory of High-Performance Civil Engineering Materials

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3