Flexural Capacity Prediction Model For Steel Fibre-Reinforced Concrete Beams

Author:

Zhong Aocheng,Sofi MassoudORCID,Lumantarna Elisa,Zhou Zhiyuan,Mendis Priyan

Abstract

AbstractSteel fibre (SF) reinforcement has been shown to improve the ductility of high strength concrete (HSC), which is known to be brittle. Research conducted to date on steel fibre reinforced concrete and its effects have emphasised post-failure performance and cracking mechanism. The difficulty in predicting the behaviour of fibres is due to the randomly distributed nature of the material within the matrix leading to a probability distribution of results. Published literature has shown a benefit of adding steel fibres in terms of the ductility performance of structures. Clearly, there is a potential for such material as replacement of conventional steel reinforcement. This study proposes a theoretical model of evaluating the potential of using steel fibres as a replacement material to conventional steel reinforcement bars based on the case study, laboratory and theoretical methodologies. The compressive strength of the concrete at key dates, the effective fibre cross-sectional were measured, and a prediction model was created based on the measurement parameters. The use of four-point flexural testing, standard compressive testing and software image modelling provided the study with relevant data used to analyse and compare to the prediction. Greater ductility performance and toughness were observed with increased fibre volumes, confirming proposed predictions and conclusion drawn from published literature. No consistent or conclusive correlations between fibre volumes and the compressive strength of concrete were found. A relationship between fibre volumes and predicted moment capacities of steel fibre reinforced concrete beams was found based on the proposed theoretical flexural analysis method.

Funder

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

Reference36 articles.

1. Akkaya, Y., Picka, J., & Shah, S. P. (2000). Spatial distribution of aligned short fibers in cement Standards Australia. (2017). Bridge Design Part 5: Concrete (AS 5100.5–2017) Retrieved from SAI Global.

2. Australian Standards (2014). Methods of testing concrete - Method 9: Compressive strength tests-Concrete, mortar and grout specimens (AS 1012.9–2014), Committee BD-42, Standards Australia, Sydney, NSW, Australia.

3. Australian Standards (2014). Methods of testing concrete - Method 17: Determination of the static chord modulus of elasticity and Poisson’s ratio of concrete specimens (Reconfirmed 2014) (AS 1012.17–1997 R2014), Committee BD-42, Standards Australia Sydney, NSW, Australia.

4. Australian Standards (2014). Methods of Testing Concrete – Method of Preparing Concrete Mixes in the Laboratory, AS 1012.2: 2014), Standards Australia, Sydney, NSW, Australia.

5. A Standards 2018 Concrete Structures, (AS 3600, 2018), Committee BD-002 Standards Australia

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3