Experimental and Theoretical Study of Concrete-Filled Steel Tube Columns Strengthened by FRP/Steel Strips Under Axial Compression

Author:

Zhang Shichang,Miao Kunting,Wei YangORCID,Xu Xiaoming,Luo Bin,Shi Weizhou

Abstract

AbstractConcrete-filled steel tube (CFST) columns are widely used in civil engineering because of their excellent bearing capacity; however, the reinforcement of CFST columns lacks effective measures. To strengthen CFST columns quickly and effectively, two methods, namely, winding FRP (fiber reinforced polymer) or steel strips, were explored in this work. Two unconfined CFST columns, eight FRP-strengthened CFST columns and four welded steel strip-strengthened CFST columns were manufactured and tested. The failure modes and axial load–strain curves of all specimens under compression load were concluded and compared. The effects of the primary parameters, such as FRP layers (1, 2, 3 and 4 layers) and steel strip thickness (3.0 and 6.0 mm), on the bearing capacity and deformation capacity were also investigated. The ultimate load of CFST columns increased from 28.72 to 64.16% after being confined by FRP with one to four layers. The ultimate load of the welded steel strip-strengthened CFST column with 3.0 mm steel strips and 6.0 mm steel strips increased by 28.46% and 49.82%, respectively, compared with the unconfined CFST column. Thus, the increase in FRP layers and steel strip thickness can markedly improve the compressive behavior of the FRP/welded steel strip-strengthened CFST columns. The cost performance of the two different reinforcement methods also showed that the cost of the welded steel strip-strengthened CFST column is nearly 40% of that of the FRP-strengthened CFST column when the same strengthening effect was obtained, which indicated that the welded steel strip-strengthened CFST column is more cost-efficient than CFST columns confined by FRP. Finally, six existing models for the ultimate load of FRP-strengthened CFST columns were presented and evaluated. From the evaluation results, the Zhang et al.’s model, Lu et al.’s model and Hu et al.’s model for FRP-strengthened CFST columns were shown to provide the best applicability and accuracy. Based on the Mander et al.’s model, a model for the ultimate load of welded steel strip-strengthened CFST columns was proposed and evaluated. The proposed model can accurately predict the ultimate load of welded steel strip-strengthened CFST columns.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Natural Science Foundation of Jiangsu Province

Six Talent Peaks Project in Jiangsu Province

Qinglan Project of Jiangsu Province of China

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3