Author:
Kim Seungchan,Lee Yangwoo,Plank J.,Moon Juhyuk
Abstract
AbstractTricalcium oxy silicate (C3S) and dicalcium silicate (C2S) are the major constituents of cement. In this study, the reactivity of polymorphs of calcium silicates is quantitatively investigated using Density Functional Theory. The result of combining the DFT calculation and the Bader charge analysis elucidates that the main difference in reactivity between C3S and C2S is the presence of oxy ions in C3S which has smaller partial charge compared to that of other oxygen in the crystals. For the C3S, the reactivity of among different C3S polymorphs is decisively affected by the Bader charge of oxy ions. In contrast, total internal energy of C2S determines the quantitative chemical reactivity of C2S polymorphs. This result suggests that oxy ion has more dominant impact on the thermodynamic stability of calcium silicates. Furthermore, total energy can be used to estimate the chemical reactivity of calcium silicates, where there is no oxy ion exists.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献