Abstract
AbstractThis paper investigates the effect of silica fume on the mechanical properties of metakaolin-based geopolymers with different silicon-to-aluminum molar (S/A) ratios. Geopolymer has been extensively studied as an alternative to traditional cementitious material because of its low CO2 emissions. Previous studies revealed that the application of silica fume can improve the compressive strength of geopolymer, however, the optimum dosages are different. To examine the reason for the different optimum dosages of silica fume, this study prepares geopolymer specimens of which variables are the S/A ratio and silica fume dosage, and conducts compressive strength and initial setting time tests. To examine whether the strength degradation is caused by the expansion due to the added silica fume in geopolymer, the volume and dynamic modulus are also measured. The results show that a part of silica fume dissolves and changes the S/A ratio of geopolymer, and that a part of silica fume remains in the geopolymer matrix. These combined effects of silica fume result in an irregular compressive strength trend, and, thus, an optimum dosage of silica fume can vary depending on the S/A ratio. Furthermore, the volume expansion of geopolymer with silica fume is observed, however, no sign of damage on the compressive strength is found.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Civil and Structural Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献