The Effect of Fly Ash and Recycled Aggregate on the Strength and Carbon Emission Impact of FRCCs

Author:

Lee Jong-Won,Jang Young-Il,Park Wan-Shin,Yun Hyun-Do,Kim Sun-WooORCID

Abstract

AbstractConcrete is the most widely used construction material in the world. In particular, cementitious composites that contain reinforced fibers have a relatively large amount of cement. Therefore, in this study, the target is to maintain at least 90% of the performance along with a reduction of CO2 emissions from the material stage during fiber-reinforced cementitious composites (FRCCs) production by applying fly ash (FA) and recycled sand (RS). To calculate the amount of CO2 emission at the stage of manufacturing the FRCCs, life cycle inventory database (LCI DB) were referenced from domestic and Japan. As the performance efficiency indicators, simple equations to evaluate the amount of CO2 emission of FRCCs were then formulated as a function of the replacement ratio of FA and RS. And binder and CO2 intensities were analyzed by FRCCs strength. Based on the results for the test, a mix of FA 25% and RS 25% of W/B 0.45, is considered most suitable in terms of performance of FRCCs and reduction of CO2 emissions.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3