Abstract
Abstract
Chloride attack is one of the most critical deterioration due to rapid corrosion initiation and propagation which can cause structural safety problem. Extended service life through repairing is very important for determination of maintenance strategy. Conventionally adopted models for estimation of life cycle cost have shown step-shaped elevation of cost, however the extension of service life is much affected by quality of construction and repairing materials, which means engineering uncertainties in residual service life. In the paper, reinforced concrete column with three different mix proportions exposed to chloride attack are considered, and repairing numbers with related costs are evaluated through probabilistic technique for maintenance. With a given exposure condition, service lives with normal probabilistic distribution are considered, and the effect of design parameters such as coefficient of variation of service life and 1st repairing timing are investigated. The comparison of results from conventional approach (step-function) and probabilistic approach are performed. When calculating repair frequency for intended service life through probabilistic model, the required repair frequency is evaluated to be 6.71 times for OPC, 4.09 times for SG30, and 2.95 times for SG50, respectively. The probabilistic model for repairing cost is evaluated to be effective for reducing the repair frequency reasonably with changing the intended service life and design parameters.
Funder
National Research Foundation
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Civil and Structural Engineering
Reference21 articles.
1. Al-Amoudi, O. S. B., Al-Kutti, W. A., Ahmad, S., & Maslehuddin, M. (2009). Correlation between compressive strength and certain durability indices of plain and blended cement concretes. Cement and Concrete Composites, 31(9), 672–676.
2. Alonso, C., Castellote, M., & Andrade, C. (2002). Chloride threshold dependence of pitting potential of reinforcements. Electrochemica Acta, 47(21), 3469–3481.
3. American Concrete Institute, ACI. (2011). Building code requirements for structural concrete and commentary. ACI 318-11. Detroit, MI: American Concrete Institute (ACI).
4. Barringer, H. P., & Weber, D. P. (1997). Life cycle cost and reliability for process equipment. In: 8th Annual energy week conference and exhibition (pp 1–22). Houston, TX: American Petroleum Institute.
5. Bian, J., Sun, X., Wang, M., Zheng, H., & Xing, H. (2014). Probabilistic analysis of life cycle cost for power transformer. Journal of Power and Energy Engineering, 2(4), 489–494.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献