Application of Frictional Bond-Slip Model to Large-Scale FRP-Strengthened T-Beams with U-wraps

Author:

Lee JaehaORCID,Lopez Maria

Abstract

AbstractStudies on U-wraps generally focus on the experimental results and mechanisms of the shear strengthening effect. Only a few studies have focused on the anchoring effect of the longitudinal FRP due to addition of the U-wrap. Lee and Lopez (Constr Build Mater 194:226–237, 2016) have found experimentally from pull-out tests that incremental changes occur in the debonding strain at the concrete-FRP interface depending on the various type of U-wraps. The proposed numerical method using the Frictional Bond-Slip (FBS) model has been validated by comparing the pull-out test results (Lee and Lopez Constr Build Mater 194:226–237, 2016). In the present study, the FBS model was applied to characterize the behavior of a large scale FRP strengthened T-beam with multiple U-wraps. First, the 2-dimensional (2D) model for pull-out test was developed. Debonding load and behavior of the model were compared with both the experimental results (Lee and Lopez Constr Build Mater 194:226–237, 2016) and the simulation results of a 3-dimensional (3D) model from a previous study (Lee and Lopez Constr Build Mater 194:226–237, 2016). Next, the 2D model was applied to model the behavior of a large scale FRP strengthened T-beam with multiple U-wraps. The conducted 2D simulation using the proposed FBS model predicted well the strains at various locations on the FRP sheet, the flexural capacity and complex failure mode of the FRP strengthened beam with several U-wraps. The proposed FBS model was also applied to other comparable studies, and debonding strains were successfully predicted within an margin of error of 7%. Using the validated model, a parametric study of the FRP strengthened T-beam was conducted with various key parameters of the U-wrap, such as the angle of U-wrap and the number of U-wrap.

Funder

National Research Foundation of Korea

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

Reference30 articles.

1. ACI Committee 440. (2017). Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. Farmington Hill, MI: ACI 440.2R-17, American Concrete Institute.

2. ASTM. (2005). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM C39.

3. ASTM. (2011). Standard test method for splitting tensile strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM C496.

4. ASTM. (2012). Standard test method for shear properties of composite materials by the V-Notched beam method. West Conshohocken, PA: ASTM D5379.

5. ASTM. (2014). Standard test method for tensile properties of polymer matrix composite materials. West Conshohocken, PA: ASTM D3039.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3