Abstract
Abstract
In this paper, a prediction method based on artificial neural network was developed to rapidly determine the residual shear resistance of reinforced concrete (RC) beams after fire. Firstly, the temperature distribution along the beam section was determined through finite element analysis using software ABAQUS. A residual shear strength calculation model was developed and validated using the test data. Using this model, 384 data entries were derived for training and testing. The input layer of neural network involved parameters of beam height, beam width, fire exposure time, cross-sectional area of stirrup, stirrup spacing, concrete strength, and concrete cover thickness. The output was the shear resistance of RC beams. It was found that use of BP neural network could precisely predict the post-fire shear resistance of RC beams. The predicted data were highly consistent with the target data. Thus, this is a novel method for computing post-fire shear resistance of RC beams. Using this new method, further investigation was also made on the effects of different parameters on the shear resistance of the beams.
Funder
China Scholarship Council
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Civil and Structural Engineering
Reference39 articles.
1. Abbasi, A., & Hogg, P. J. (2005). Prediction of the failure time of glass fiber reinforced plastic reinforced concrete beams under fire conditions. Journal of Composites for Construction, 9(5), 450–457.
2. Annerel, E., & Taerwe, L. (2011). Evolution of the strains of traditional and self-compacting concrete during and after fire. Materials and Structures, 44(8), 1369–1380.
3. Bengar, H. A., Abdollahtabar, M., & Shayanfar, J. (2016). Predicting the ductility of RC beams using nonlinear regression and ANN. Iranian Journal of Science & Technology Transactions of Civil Engineering, 40(4), 1–14.
4. BSI. (2004). BS EN 1992-1-2:2004, Eurocode 2—Design of concrete structures-part 1–2: General rules-structural fire design. Structural fire design. London: BSI.
5. BSI. (2013). BS ENV 1994-1-2, Eurocode 4—Design of composite steel and concrete structures—part 1–2: General rules. Structural fire design. London: BSI.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献