Tensile Fracture Property of Concrete Affected by Interfacial Transition Zone

Author:

Ji Heli,Yang Xinhua,Luo Zuyun,Bai Fan

Abstract

AbstractAs a weak link between aggregate and mortar in concrete, interfacial transition zone (ITZ) usually plays a key role in concrete fracture. To investigate the tensile fracture property of concrete affected by the mechanical properties of ITZ numerically, the geometrical models of heterogeneous concrete were established with the parameterization modeling. They include three phases, namely, mortar, ITZ, and randomly distributed aggregates with distinct sizes and orientations. The cracking behaviors of mortar and ITZ were characterized by the bilinear cohesive zone constitutive model. Based on the experiments, the mechanical properties of ITZ were mediated by changing the water–cement ratio of mortar, the aggregate surface roughness and the content of silica fume in interfacial agent. A series of numerical simulations were conducted on the concrete models in tension after the numerical modeling method was validated. The macroscopic tensile fracture properties of concrete were quantitatively connected with some microscopic variables, including the water–cement ratio of mortar, the aggregate surface roughness and the silica fume content in interfacial agent. It was found that the tensile fracture properties of concrete have negative linear correlations with the water–cement ratio of mortar, while the effects of the aggregate surface roughness and the silica fume content in interfacial agent are very complex. The tensile fracture mechanical properties of concrete have a bilinear relationship with the aggregate surface roughness and an approximate quadratic parabola relationship with the content of silica fume in the interfacial agent. This study is beneficial to improve the fracture resistance of concrete by some interface handling measures.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3