Experimental Study on Existing RC Circular Members Under Unequal Lateral Impact Train Collision

Author:

AL-Bukhaiti KhalilORCID,Yanhui Liu,Shichun Zhao,Abas Hussein,Nan Xu,Lang Yang,Yu Yan Xing,Daguang Han

Abstract

AbstractWith the fast growth of high-speed rail in recent years, derailment has become the first hidden danger of high-speed rail transportation. The high-speed train passes near the station building. So the train may derail and hit the station building. Building a high-speed railway station usually uses a reinforced concrete structure. As a result of high impact energy on the impact body, the reinforced concrete (RC) member may fail; the impact point is near the member's foot; the structural member's constraint can be considered fixed support. This paper investigates the dynamic behavior of four types of circular reinforced concrete members under unequal lateral impact loads. The RC member's failure mechanism and dynamic response addressed the significance of unequal lateral impact load. The usual circular reinforced concrete members are used as the model to perform the drop-weight impact test. The specimens' crack pattern, failure mechanism, impact, deflection, and strain time–history curves are obtained. Findings show that between the impact point and the adjacent support, shear fractures occur that fail in shear mode. Shear cracks are based on impact velocity, longitudinal reinforcement ratio, and stirrup ratio. One type is more destructive to members and nodes. A shear fracture occurs when a longitudinal reinforcement fractures towards the closer support. The effects of impact velocity, longitudinal reinforcement ratio, and stirrup ratio on the dynamic impact response are studied. The experimental results may help improve structural member impact resistance. The critical section (right side) computed the static shear resistance using shear force, whereas the maximum external load resistance determines static bending moment resistance. Understanding how circular members fail to be subjected to unequal lateral impact loads provides insight into circular RC members' impact design and damage evaluation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3