Influence of Steel Slag as a Partial Replacement of Aggregate on Performance of Reinforced Concrete Beam

Author:

Mekonen Tadese Birlie,Alene Temesgen Ejigu,Alem Yared AkliluORCID,Nebiyu Wallelign Mulugeta

Abstract

AbstractAmidst the global pursuit of sustainable alternatives in concrete production, this study explores the viability of incorporating by-products or waste materials as aggregates to support the concrete construction industry, with a specific emphasis on steel slag. The objective of this study is to evaluate the effectiveness of steel slag as a partial replacement for fine and coarse aggregates in concrete production. The experiment involved casting 30 cubes and 10 beams, replacing fine aggregate from 0 to 60%. Flexural and compressive strength tests at 7 and 28 days followed the ACI method. Results revealed that a 30% replacement of fine aggregate with steel slag led to higher compressive strength at both 7 and 28 days, while a 45% replacement showed superior flexural strength at 28 days. Further chemical analysis and optimization are recommended for deeper insights. The study concludes with marginal improvements in compressive and flexural strength with steel slag partial replacement, identifying 30% for fine aggregate and 45% for coarse aggregate as optimal replacements. In addition, the mineral composition of steel slag exhibits significant variability, with compounds, including silicon dioxide (SiO2), iron oxide (Fe2O3), manganese oxide (MnO), aluminum oxide (Al2O3), and calcium oxide (CaO). Chemical analysis indicates high silicate content and minimal alkali content, contributing to enhanced strength during concreting. Higher steel slag replacement reduces workability, confirmed by slump tests. However, all mixes maintain a true slump, and unit weight increases with steel slag aggregate replacement. Compressive strength improves incrementally with higher steel slag content, echoing prior research. In addition, flexural strength rises with steel slag replacing both coarse and fine aggregates, suggesting enhanced performance in reinforced concrete structures. These findings highlight steel slag’s potential as a sustainable alternative in concrete production, aiming to advance its application in the construction industry, promoting environmental sustainability and economic viability.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3