Experimental Study on the Mechanism of the Combined Action of Cavitation Erosion and Abrasion at High Speed Flow

Author:

Wang X.ORCID,Hu Y. A.,Li Z. H.

Abstract

AbstractA new experimental method on simulating the combined action of cavitation erosion and abrasion was proposed to investigate the erosion mechanism of overflow structure induced by the said processes. An automatic sand mixing device was invented for high-pressure and high-speed flow based on the characteristics of Venturi cavitation generator and hydraulic Bernoulli principle. The experimental system for the combined action of cavitation erosion and abrasion was designed and constructed, and high-speed sand mixing flow only appeared in the test section. A series of tests on the combined and single action of cavitation erosion and abrasion on hydraulic concrete and cement was carried out by using the invented experimental device. Results show that the wear of concrete surface exhibited the combined characteristics of cavitation erosion and abrasion under their joint action. The damage degree of concrete surface under the combined action was more severe than that under a single action. The mass loss of concrete under the combined action was higher than sum of mass losses of concrete under two single actions. The promotion and enhancement between cavitation erosion and abrasion existed in high-speed sand mixing flow. A power exponential relationship was observed between erosion mass loss and flow speed, and the velocity indexes approximated 4.5. Small and light sand particles easily follow water flow. Thus, the strong coupling effect of cavitation erosion and abrasion resulted from the presence of small sand particles. Given the different mechanisms of cavitation erosion and abrasion, presenting the skeleton structure formed by cavitation erosion was notably difficult under the action of abrasion. Meanwhile, abrasion wear easily occurred under the impact of cavitation erosion, and this result is due to the mechanism of the combined action of both processes.

Funder

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3