Challenges in Evaluating Seismic Collapse Risk for RC Buildings

Author:

Zhou Jin,Zhang Zhelun,Williams Tessa,Kunnath Sashi K.ORCID

Abstract

AbstractThe development of fragility functions that express the probability of collapse of a building as a function of some ground motion intensity measure is an effective tool to assess seismic vulnerability of structures. However, a number of factors ranging from ground motion selection to modeling decisions can influence the quantification of collapse probability. A methodical investigation was carried out to examine the effects of component modeling and ground motion selection in establishing demand and collapse risk of a typical reinforced concrete frame building. The primary system considered in this study is a modern 6-story RC moment frame building that was designed to current code provisions in a seismically active region. Both concentrated and distributed plasticity beam–column elements were used to model the building frame and several options were considered in constitutive modeling for both options. Incremental dynamic analyses (IDA) were carried out using two suites of ground motions—the first set comprised site-dependent ground motions, while the second set was a compilation of hazard-consistent motions using the conditional scenario spectra approach. Findings from the study highlight the influence of modeling decisions and ground motion selection in the development of seismic collapse fragility functions and the characterization of risk for various demand levels.

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

Reference28 articles.

1. Arteta, C. A., & Abrahamson, N. A. (2019). Conditional scenario spectra (CSS) for hazard-consistent analysis of engineering systems. Earthquake Spectra, 35(2), 737–757

2. ASCE. (2005). Minimum design loads for buildings and other structures. ASCE 7–05, Reston, VA: ASCE

3. ASCE/SEI. (2016). Minimum design loads and associated criteria for buildings and other structures. ASCE 7-16, American Society of Civil Engineers, Reston, VA

4. ACI (American Concrete Institute). (2014). Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary. ACI 318R. Farmington Hills, MI: ACI

5. Baker, J. W. (2011). Conditional mean spectrum: tool for ground-motion selection. Journal of Structural Engineering, 137(3), 322–331. https://doi.org/10.1061/(Asce)St.1943-541x.0000215

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3