Machine Learning Based Reactivity Prediction of Fly Ash Type F Produced from South Korea

Author:

Park Woo-Young,Moon JuhyukORCID

Abstract

AbstractFly ash (FA) is the most commonly used supplementary cementitious material in the world. However, the reactivity of FA varies substantially. In this study, new machine learning (ML) model has been developed to efficiently predict the amorphous content in FA type F. Compared to the existing ML model using types F and C of FA from different countries, this study more focused on the improved prediction of FA type F only produced from South Korea. It was found that the contents of CaO and SiO2 impact high in predicting the amount of aluminosilicate glass. However, the contribution of Al2O3 and Fe2O3 are ranked differently. The improved model algorithm was proposed as a combination of three ensemble techniques of bagging, boosting, and stacking. As a result of the test, the final model shows $${R}^{2}$$ R 2 of 0.80 in predicting the amount of aluminosilicate glass in FA type F.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3