Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance

Author:

Vargas Carmen,Argandoña Montserrat,Reina-Bueno Mercedes,Rodríguez-Moya Javier,Fernández-Aunión Cristina,Nieto Joaquín J

Abstract

AbstractChromohalobacter salexigens, a Gammaproteobacterium belonging to the familyHalomonadaceae, shows a broad salinity range for growth. Osmoprotection is achieved by the accumulation of compatible solutes either by transport (betaine, choline) or synthesis (mainly ectoine and hydroxyectoine). Ectoines can play additional roles as nutrients and, in the case of hydroxyectoine, in thermotolerance. A supplementary solute, trehalose, not present in cells grown at 37°C, is accumulated at higher temperatures, suggesting its involvement in the response to heat stress. Trehalose is also accumulated at 37°C in ectoine-deficient mutants, indicating that ectoines suppress trehalose synthesis in the wild-type strain. The genes for ectoine (ectABC) and hydroxyectoine (ectD,ectE) production are arranged in three different clusters within theC. salexigenschromosome. In order to cope with changing environment,C. salexigensregulates its cytoplasmic pool of ectoines by a number of mechanisms that we have started to elucidate. This is a highly complex process because (i) hydroxyectoine can be synthesized by other enzymes different to EctD (ii) ectoines can be catabolized to serve as nutrients, (iii) the involvement of several transcriptional regulators (σS, σ32, Fur, EctR) and hence different signal transduction pathways, and (iv) the existence of post-trancriptional control mechanisms. In this review we summarize our present knowledge on the physiology and genetics of the processes allowingC. salexigensto cope with osmotic stress and high temperature, with emphasis on the transcriptional regulation.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Microbiology

Reference36 articles.

1. Csonka LN, Epstein W: Osmoregulation. Escherichia coli and Salmonella: Cellular and Molecular Biology. Edited by: Neidhart FC, Curtiss JJ. 1996, Washington, DC, ASM Press, 1210-1223. 2

2. ÖByrne CP, Booth IR: Osmoregulation and its importance to food-borne microorganisms. Int J Food Microbiol. 2002, 74: 203-216. 10.1016/S0168-1605(01)00681-X.

3. Galinski EA, Trüper HG: Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev. 1994, 15: 95-108. 10.1111/j.1574-6976.1994.tb00128.x.

4. Bremer E, Krämer R: Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. Bacterial stress responses. Edited by: Storz G, Hengge-Aronis R. 2000, Washington, D.C., ASM Press, 77-97.

5. Roberts MF: Osmoadaptation and osmoregulation in archaea. Front Biosci. 2004, 9: 1999-2019. 10.2741/1366.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3