Transcriptional responses to biologically relevant doses of UV-B radiation in the model archaeon, Halobacteriumsp. NRC-1

Author:

Boubriak Ivan,Ng Wooi Loon,DasSarma Priya,DasSarma Shiladitya,Crowley David J,McCready Shirley J

Abstract

Abstract Background Most studies of the transcriptional response to UV radiation in living cells have used UV doses that are much higher than those encountered in the natural environment, and most focus on short-wave UV (UV-C) at 254 nm, a wavelength that never reaches the Earth's surface. We have studied the transcriptional response of the sunlight-tolerant model archaeon, Halobacterium sp. NRC-1, to low doses of mid-wave UV (UV-B) to assess its response to UV radiation that is likely to be more biologically relevant. Results Halobacterium NRC-1 cells were irradiated with UV-B at doses equivalent to 30 J/m2 and 5 J/m2 of UV-C. Transcriptional profiling showed that only 11 genes were up-regulated 1.5-fold or more by both UV-B doses. The most strongly up-regulated gene was radA1 (vng2473), the archaeal homologue of RAD51/recA recombinase. The others included arj1 (vng779) (recJ-like exonuclease), top6A (vng884) and top6B (vng885) (coding for Topoisomerase VI subunits), and nrdJ (vng1644) (which encodes a subunit of ribonucleotide reductase). We have found that four of the consistently UV-B up-regulated genes, radA1 (vng2473), vng17, top6B (vng885) and vng280, share a common 11-base pair motif in their promoter region, TTTCACTTTCA. Similar sequences were found in radA promoters in other halophilic archaea, as well as in the radA promoter of Methanospirillum hungatei. We analysed the transcriptional response of a repair-deficient ΔuvrA (vng2636) ΔuvrC (vng2381) double-deletion mutant and found common themes between it and the response in repair proficient cells. Conclusion Our results show a core set of genes is consistently up-regulated after exposure to UV-B light at low, biologically relevant doses. Eleven genes were up-regulated, in wild-type cells, after two UV-B doses (comparable to UV-C doses of 30 J/m2 and 5 J/m2), and only four genes were up-regulated by all doses of UV-B and UV-C that we have used in this work and previously. These results suggest that high doses of UV-C radiation do not necessarily provide a good model for the natural response to environmental UV. We have found an 11-base pair motif upstream of the TATA box in four of the UV-B up-regulated genes and suggest that this motif is the binding site for a transcriptional regulator involved in their response to UV damage in this model archaeon.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3