A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution

Author:

Fukushima Tadamasa,Usami Ron,Kamekura Masahiro

Abstract

Abstract Background Most of the haloarchaeal strains have been isolated from hypersaline environments such as solar evaporation ponds, salt lakes, or salt deposits, and they, with some exceptions, lyse or lose viability in very low-salt concentrations. There are no salty environments suitable for the growth of haloarchaea in Japan. Although Natrialba asiatica and Haloarcula japonica were isolated many years ago, the question, "Are haloarchaea really thriving in natural environments of Japan?" has remained unanswered. Results Ten strains were isolated from a traditional Japanese-style salt field at Nie, Noto Peninsula, Japan by plating out the soil samples directly on agar plates containing 30% (w/v) salts and 0.5% yeast extract. They were most closely related to strains of three genera, Haladaptatus, Halococcus, and Halogeometricum. Survival rates in 3% and 0.5% SW (Salt Water, solutions containing salts in approximately the same proportions as found in seawater) solutions at 37°C differed considerably depending on the strains. Two strains belonging to Halogeometricum as well as the type strain Hgm. borinquense died and lysed immediately after suspension. Five strains that belonged to Halococcus and a strain that may be a member of Halogeometricum survived for 1–2 days in 0.5% SW solution. Two strains most closely related to Haladaptatus possessed extraordinary strong tolerance to low salt conditions. About 20 to 34% of the cells remained viable in 0.5% SW after 9 days incubation. Conclusion In this study we have demonstrated that haloarchaea are really thriving in the soil of Japanese-style salt field. The haloarchaeal cells, particularly the fragile strains are suggested to survive in the micropores of smaller size silt fraction, one of the components of soil. The inside of the silt particles is filled with concentrated salt solution and kept intact even upon suspension in rainwater. Possible origins of the haloarchaea isolated in this study are discussed.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Microbiology

Reference39 articles.

1. Ohno M: Technical progress of salt production in Japan. Seventh Symposium on Salt. Edited by: Kakihana H, Hardy HR Jr, Hoshi T, Toyokura K. 1993, Amsterdam, Elsevier Science Publishers BV, I: 13-19.

2. The Salt Industry Center of Japan. [http://www.shiojigyo.com/english/concentrate.html]

3. DasSarma S, Arora P: Halophiles. Encyclopedia of Life Sciences. 2001, Nature Publishing Group, 8: 458-466.

4. Oren A: The ecology of the extremely halophilic archaea. FEMS Microbiology Reviews. 1994, 13: 415-439. 10.1111/j.1574-6976.1994.tb00060.x.

5. Grant WD, Kamekura M, McGenity TG, Ventosa A: Order I. Halobacteriales Grant and Larsen 1989b, 495VP. Bergey's Manual of Systematic Bacteriology. Edited by: Boone DR, Castenholz RW, Garrity GM. 2002, New York, Springer Verlag, I: 294-299. Second

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3