Pharmacokinetics of Linezolid and Ertapenem in experimental parapneumonic pleural effusion

Author:

Saroglou Maria,Tryfon Stavros,Ismailos Georgios,Liapakis Ioannis,Tzatzarakis Manolis,Tsatsakis Aristidis,Papalois Apostolos,Bouros Demosthenes

Abstract

Abstract Objective To determine the extent of linezolid and ertapenem penetration into the empyemic fluid using a rabbit model of empyema. Methods An empyema was created via the intrapleural injection of Escherichia coli bacteria (ATCC 35218) into the pleural space of New Zealand white rabbits. After an empyema was verified by thoracocentesis, 24 hours post inoculation, linezolid (10 mg/kg) and ertapenem (60 mg/kg) were administered intravenously into 10 and 8 infected empyemic rabbits, respectively. Antibiotic levels were determined in samples of pleural fluid and blood serum, collected serially at 1, 2, 4, 6 and 8 hours, after administration each of the two antibiotics. Results Linezolid as well as ertapenem penetrate well into the empyemic pleural fluid, exhibiting a slower onset and decline compared to the corresponding blood serum levels. Equilibration between blood serum and pleural fluid compartments seems to occur at 1.5 hours for both linezolid and ertapenem, with peak pleural fluid levels (Cmaxpf of 2.02 ± 0.73 «mu»g/ml and Cmaxpf of 3.74 ± 1.39 «mu»g/ml, correspondingly) occurring 2 hours post antibiotics administration and decreasing very slowly thereafter. The serum concentrations for both antibiotics were significantly lower from the corresponding pleural fluid ones during the 8 hours collecting data, with the exception of samples collected at the 1st hour (Cmaxserum of 2.1 ± 1.2 «mu»g/ml for linezolid and Cmaxserum of 6.26 ± 2.98 «mu»g/ml for ertapenem). Conclusion Pleural fluid levels of both antibiotics are inhibitory for common specified pathogens causing empyema.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Clinical Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3