RUNX3-activated apelin signaling inhibits cell proliferation and fibrosis in diabetic nephropathy by regulation of the SIRT1/FOXO pathway

Author:

Zhong Xin,Zhang Jun

Abstract

Abstract Background Diabetic nephropathy is a major secondary cause of end-stage renal disease. Apelin plays an important role in the development of DN. Understanding the exact mechanism of Apelin can help expand the means of treating DN. Methods Male C57BL/6 mice was used and STZ treatment was implemented for DN model establishment. Lentivirus systems including Lv-sh-RUNX3 and Lv-Apelin were obtained to knockdown RUNX3 and overexpress Apelin, respectively. A total of 36 mice were divided into 6 groups (n = 6 in each group): control, DN, DN + LV-Vector, DN + Lv-Apelin, DN + LV-Apelin + LV-sh-NC and DN + Lv-Apelin + Lv-sh-RUNX3 group. In vitro studies were performed using mesangial cells. Cell viability and proliferation was assessed through CCK8 and EDU analysis. Hematoxylin and eosin staining as well as Masson staining was implemented for histological evaluation. RT-qPCR was conducted for measuring relative mRNA levels, and protein expression was detected by western blotting. The interaction between SIRT1 and FOXO were verified by co-immunoprecipitations, and relations between RUNX3 and Apelin were demonstrated by dual luciferase report and chromatin immunoprecipitation. Results The DN group exhibited significantly lower Apelin expression compared to control (p < 0.05). Apelin overexpression markedly improved blood glucose, renal function indicators, ameliorated renal fibrosis and reduced fibrotic factor expression (p < 0.05) in the DN group, accompanied by elevated sirt1 levels and diminished acetylated FOXO1/FOXO3a (p < 0.05). However, RUNX3 knockdown combined with Apelin overexpression abrogated these beneficial effects, leading to impaired renal function, exacerbated fibrosis, increased fibrotic factor expression and acetylated FOXO1/FOXO3a versus Apelin overexpression alone (p < 0.05). In mesangial cells under high glucose, Apelin overexpression significantly inhibited cell proliferation and fibrotic factor production (p < 0.05). Conversely, RUNX3 interference enhanced cell proliferation and the secretion of fibrotic factors. (p < 0.05). Remarkably, combining Apelin overexpression with RUNX3 interference reversed the proliferation and fibrosis induced by RUNX3 interference (p < 0.05). Mechanistic studies revealed RUNX3 binds to the Apelin promoter, with the 467–489 bp site1 as the primary binding region, and SIRT1 physically interacts with FOXO1 and FOXO3a in mesangial cells. Conclusion RUNX3 activated Apelin and regulated the SIRT1/FOXO signaling pathway, resulting in the suppressed cell proliferation and fibrosis in diabetic nephropathy. Apelin is a promising endogenous therapeutic target for anti-renal injury and anti-fibrosis in diabetic nephropathy. RUNX3 may serve as an endogenous intervention target for diseases related to Apelin deficiency.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3