Targeting ferroptosis with miR-144-3p to attenuate pancreatic β cells dysfunction via regulating USP22/SIRT1 in type 2 diabetes

Author:

Zhang Shanshan,Liu Xiao,Wang Jihong,Yuan Fengjuan,Liu Yali

Abstract

Abstract Background Recently, ferroptosis has been implicated in the pathologic process of several diseases including type 2 diabetes mellitus (T2DM). However, molecular mechanisms underlying ferroptosis in T2DM remain obscure. Methods Twenty four mice were included in this study. T2DM model mice were established by a high-fat diet combined with streptozotocin injection. INS-1 cells were stimulated with high glucose (HG). Cell viability was detected by CCK-8 kit. The levels of GSH, MDA, iron, and lipid ROS, and SOD activity, were detected by the corresponding kits. The interaction between miR-144-3p and USP22 was validated by dual-luciferase reporter assay. The relationship between USP22 and its substrate was verified using Co-IP and ubiquitination assays. The mRNA and protein expressions were examined by RT-qPCR and western blot, respectively. The functions of β cells in vitro and in vivo were evaluated glucose-stimulated insulin secretion test and HOMA-β, respectively. Results Ferroptosis occurred in the pancreas of T2DM mice and HG-induced INS-1 cells. Silencing miR-144-3p blocked the effect of HG on the cell viability and accumulation of lipid peroxides, thereby improving the insulin secretion in INS-1 cells. Mechanistically, USP22 is a direct target of miR-144-3p, which could stabilize SIRT1 expression, thereby suppressing ferroptosis. Overexpressing USP22 attenuated deleterious roles of HG in INS-1 cells; but its roles were reversed by up-regulating miR-144-3p. In vivo study demonstrated that miR-144-3p antagomir exerted an anti-hyperglycemic effect and regulated the ferroptosis-related proteins in the pancreas. Conclusion The up-regulation of miR-144-3p suppressed USP22/SIRT1 to induce ferroptosis, which causes pancreatic β cells dysfunction, thereby promoting T2DM development.

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3