Author:
Jie Ran,Zhu Pengpeng,Zhong Jiao,Zhang Yan,Wu Hongyan
Abstract
Abstract
Background
It has been reported that long non-coding RNAs (lncRNAs) play vital roles in diabetic nephropathy (DN). Our study aims to research the function of lncRNA KCNQ1OT1 in DN cells and the molecular mechanism.
Methods
Human glomerular mesangial cells (HGMCs) and human renal glomerular endothelial cells (HRGECs) were cultured in high glucose (30 mM) condition as models of DN cells. KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) and miR-18b-5p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The mRNA and protein levels of Sorbin and SH3 domain-containing protein 2 (SORBS2), Type IV collagen (Col-4), fibronectin (FN), transcriptional regulatory factor-beta 1 (TGF-β1), Twist, NF-κB and STAT3 were measured by qRT-PCR and western blot. Cell viability was detected by cell counting kit-8 (CCK-8) assay for selecting the proper concentration of glucose treatment. Additionally, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry assay were employed to determine cell proliferation and apoptosis, respectively. The targets of KCNQ1OT1 was predicted by online software and confirmed by dual-luciferase reporter assay.
Results
KCNQ1OT1 and SORBS2 were elevated in DN. Both knockdown of KCNQ1OT1 and silencing of SORBS2 restrained proliferation and fibrosis and induced apoptosis in DN cells. Besides, Overexpression of SORBS2 restored the KCNQ1OT1 knockdown-mediate effects on proliferation, apoptosis and fibrosis in DN cells. In addition, miR-18b-5p served as a target of KCNQ1OT1 as well as targeted SORBS2. KCNQ1OT1 knockdown repressed NF-ĸB pathway.
Conclusion
KCNQ1OT1 regulated DN cells proliferation, apoptosis and fibrosis via KCNQ1OT1/miR-18b-5p/SORBS2 axis and NF-ĸB pathway.
Publisher
Springer Science and Business Media LLC
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献