Author:
Zhang Xing-Jian,Liu Cong-Cong,Li Zuo-Lin,Ding Lin,Zhou Yan,Zhang Dong-Jie,Zhang Yao,Hou Shu-Ting,Ma Rui-Xia
Abstract
Abstract
Background
Tubulointerstitial fibrosis plays an important role in the progression of diabetic kidney disease (DKD). Sacubitril/valsartan (Sac/Val) exerts a robust beneficial effect in DKD. However, the potential functional effect of Sac/Val on tubulointerstitial fibrosis in DKD is still largely unclear.
Methods
Streptozotocin-induced diabetic mice were given Sac/Val or Val by intragastric administration once a day for 12 weeks. The renal function, the pathological changes of tubule injury and tubulointerstitial fibrosis, as well as mitochondrial morphology of renal tubules in mice, were evaluated. Genome-wide gene expression analysis was performed to identify the potential mechanisms. Meanwhile, human tubular epithelial cells (HK-2) were cultured in high glucose condition containing LBQ657/valsartan (LBQ/Val). Further, mitochondrial functions and Sirt1/PGC1α pathway of tubular epithelial cells were assessed by Western blot, Real-time-PCR, JC-1, MitoSOX or MitoTracker. Finally, the Sirt1 specific inhibitor, EX527, was used to explore the potential effects of Sirt1 signaling in vivo and in vitro.
Results
We found that Sac/Val significantly ameliorated the decline of renal function and tubulointerstitial fibrosis in DKD mice. The enrichment analysis of gene expression indicated metabolism as an important modulator in DKD mice with Sac/Val administration, in which mitochondrial homeostasis plays a pivotal role. Then, the decreased expression of Tfam and Cox IV;, as well as changes of mitochondrial function and morphology, demonstrated the disruption of mitochondrial homeostasis under DKD conditions. Interestingly, Sac/Val administration was found to restore mitochondrial homeostasis in DKD mice and in vitro model of HK-2 cells. Further, we demonstrated that Sirt1/PGC1α, a crucial pathway in mitochondrial homeostasis, was activated by Sac/Val both in vivo and in vitro. Finally, the beneficial effects of Sac/Val on mitochondrial homeostasis and tubulointerstitial fibrosis was partially abolished in the presence of Sirt1 specific inhibitor.
Conclusions
Taken together, we demonstrate that Sac/Val ameliorates tubulointerstitial fibrosis by restoring Sirt1/PGC1α pathway-mediated mitochondrial homeostasis in DKD, providing a theoretical basis for delaying the progression of DKD in clinical practice.
Funder
National Natural Science Foundation of China
Outstanding Youth Cultivation Foundation of Southeast University
Fundamental Research Funds for the Central Universities
Innovative and Entrepreneurial Talent (Doctor) of Jiangsu Province
Natural Science Foundation of Shandong Province
Qingdao Medical and Health Research Program Project
Qingdao Key Health Discipline Development Fund
Qingdao Key Clinical Specialty Elite Discipline
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献