Author:
Ma Liyuan,Liu Jieying,Deng Mingqun,Zhou Liyuan,Zhang Qian,Xiao Xinhua
Abstract
Abstract
Background
Time in range (TIR), as an important glycemic variability (GV) index, is clearly associated with disease complications in type 1 diabetes (T1D). Metabolic dysregulation is also involved in the risks of T1D complications. However, the relationship between metabolites and TIR remains poorly understood. We used metabolomics to investigate metabolic profile changes in T1D patients with different TIR.
Methods
This study included 85 T1D patients and 81 healthy controls. GV indices, including TIR, were collected from continuous glucose monitoring system. The patients were compared within two subgroups: TIR-L (TIR < 50%, n = 21) and TIR-H (TIR > 70%, n = 14). To screen for differentially abundant metabolites and metabolic pathways, serum and urine samples were obtained for untargeted metabolomics by ultra-performance liquid chromatography‒mass spectrometry. Correlation analysis was conducted with GV metrics and screened biomarkers.
Results
Metabolites were significantly altered in T1D and subgroups. Compared with healthy controls, T1D patients had higher serum levels of 5-hydroxy-L-tryptophan, 5-methoxyindoleacetate, 4-(2-aminophenyl)-2,4-dioxobutanoate, and 4-pyridoxic acid and higher urine levels of thromboxane B3 but lower urine levels of hypoxanthine. Compared with TIR-H group, The TIR-L subgroup had lower serum levels of 5-hydroxy-L-tryptophan and mevalonolactone and lower urine levels of thromboxane B3 and phenylbutyrylglutamine. Dysregulation of pathways, such as tryptophan, vitamin B6 and purine metabolism, may be involved in the mechanism of diabetic complications related to glycemic homeostasis. Mevalonolactone, hypoxanthine and phenylbutyrylglutamine showed close correlation with TIR.
Conclusions
We identified altered metabolic profiles in T1D individuals with different TIR. These findings provide new insights and merit further exploration of the underlying molecular pathways relating to diabetic complications.
Funder
National Natural Science Foundation of China
Beijing Natural Science Foundation
Beijing Municipal Science & Technology Commission
National High Level Hospital Clinical Research Funding
National Key Research and Development Program of China
CAMS Innovation Fund for Medical Sciences
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献