Knockdown of lncRNA PVT1 alleviates high glucose-induced proliferation and fibrosis in human mesangial cells by miR-23b-3p/WT1 axis

Author:

Zhong Wen,Zeng Jiaoe,Xue Junli,Du Aimin,Xu Yancheng

Abstract

Abstract Background Diabetic nephropathy (DN) is a severe complication of diabetes with type 1 and 2. Long non-coding RNAs (lncRNAs) are being found to be involved in the DN pathogenesis. In this study, we aimed to further explore the effect and underlying mechanism of plasmacytoma variant translocation 1 (PVT1) in DN pathogenesis. Methods The expression levels of PVT1, miR-23b-3p, and Wilms tumor protein 1 (WT1) mRNA were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot analysis was performed to determine protein expression. Cell proliferation was detected using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetr-azolium (MTS) assay. The targeted correlation between miR-23b-3p and PVT1 or WT1 was verified by dual-luciferase reporter assay. Results PVT1 and WT1 were highly expressed in the serum of DN patients and high glucose (HG)-induced mesangial cells (MCs). The knockdown of PVT1 or WT1 ameliorated HG-induced proliferation and fibrosis in MCs. Mechanistically, PVT1 modulated WT1 expression through acting as a molecular sponge of miR-23b-3p. The miR-23b-3p/WT1 axis mediated the protective effect of PVT1 knockdown on HG-induced proliferation and fibrosis in MCs. The NF-κB pathway was involved in the regulatory network of the PVT1/miR-23b-3p/WT1 axis in HG-induced MCs. Conclusion Our study suggested that PVT1 knockdown ameliorated HG-induced proliferation and fibrosis in MCs at least partially by regulating the miR-23b-3p/WT1/NF-κB pathway. Targeting PVT1 might be a potential therapeutic strategy for DN treatment.

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3