Abstract
Abstract
Background
Dipeptidyl peptidase 4 (DPP-4) plays a crucial role in breaking down various substrates. It also has effects on the insulin signaling pathway, contributing to insulin resistance, and involvement in inflammatory processes like obesity and type 2 diabetes mellitus. Emerging effects of DPP-4 on bone metabolism include an inverse relationship between DPP-4 activity levels and bone mineral density, along with an increased risk of fractures.
Main body
The influence of DPP-4 on bone metabolism occurs through two axes. The entero-endocrine-osseous axis involves gastrointestinal substrates for DPP-4, including glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptides 1 (GLP-1) and 2 (GLP-2). Studies suggest that supraphysiological doses of exogenous GLP-2 has a significant inhibitory effect on bone resorption, however the specific mechanism by which GLP-2 influences bone metabolism remains unknown. Of these, GIP stands out for its role in bone formation. Other gastrointestinal DPP-4 substrates are pancreatic peptide YY and neuropeptide Y—both bind to the same receptors and appear to increase bone resorption and decrease bone formation. Adipokines (e.g., leptin and adiponectin) are regulated by DPP-4 and may influence bone remodeling and energy metabolism in a paracrine manner. The pancreatic-endocrine-osseous axis involves a potential link between DPP-4, bone, and energy metabolism through the receptor activator of nuclear factor kappa B ligand (RANKL), which induces DPP-4 expression in osteoclasts, leading to decreased GLP-1 levels and increased blood glucose levels. Inhibitors of DPP-4 participate in the pancreatic-endocrine-osseous axis by increasing endogenous GLP-1. In addition to their glycemic effects, DPP-4 inhibitors have the potential to decrease bone resorption, increase bone formation, and reduce the incidence of osteoporosis and fractures. Still, many questions on the interactions between DPP-4 and bone remain unanswered, particularly regarding the effects of DPP-4 inhibition on the skeleton of older individuals.
Conclusion
The elucidation of the intricate interactions and impact of DPP-4 on bone is paramount for a proper understanding of the body's mechanisms in regulating bone homeostasis and responses to internal stimuli. This understanding bears significant implications in the investigation of conditions like osteoporosis, in which disruptions to these signaling pathways occur. Further research is essential to uncover the full extent of DPP-4's effects on bone metabolism and energy regulation, paving the way for novel therapeutic interventions targeting these pathways, particularly in older individuals.
Publisher
Springer Science and Business Media LLC