Adiponectin reduces apoptosis of diabetic cardiomyocytes by regulating miR-711/TLR4 axis

Author:

Zuo Yu,Xiao Tao,Qiu Xiangdong,Liu Zuoliang,Zhang Shengnan,Zhou Na

Abstract

Abstract Objective To investigate the regulation of adiponectin/miR-711 on TLR4/NF-κB-mediated inflammatory response and diabetic cardiomyocyte apoptosis. Methods Diabetes models were established using rats and H9c2 cardiomyocytes. qRT-PCR was used to detect adiponectin, miR-711, and TLR4. MTT, β-galactosidase staining, and flow cytometry were utilized to assess cell viability, senescence, and apoptosis, respectively. The colorimetric method was used to measure caspase-3 activity, DCFH-DA probes to detect ROS, and western blotting to determine the protein levels of Bax, Bcl-2, TLR4, and p-NF-κB p65. ELISA was performed to measure the levels of adiponectin, ICAM-1, MCP-1, and IL-1β. Dual-luciferase reporter system examined the targeting relationship between miR-711 and TLR4. H&E and TUNEL staining revealed myocardial structure and apoptosis, respectively. Results Adiponectin and miR-711 were underexpressed and TLR4/NF-κB signaling pathway was activated in high glucose-treated H9c2 cells. High glucose treatment reduced viability, provoked inflammatory response, and accelerated senescence and apoptosis in H9c2 cells. miR-711 could bind TLR4 mRNA and inactivate TLR4/NF-κB signaling. Adiponectin treatment increased miR-711 expression and blocked TLR4/NF-κB signaling. Adiponectin/miR-711 reduced myocardial inflammation and apoptosis in diabetic rats. Conclusion Adiponectin inhibits inflammation and alleviates high glucose-induced cardiomyocyte apoptosis by blocking TLR4/NF-κB signaling pathway through miR-711.

Funder

Innovative Province Construction Science Popularization Special Project of Hunan Provincial Science and Technology Department

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3