Adipose-derived stem cell exosomes regulate Nrf2/Keap1 in diabetic nephropathy by targeting FAM129B

Author:

Ren PeiyaoORCID,Qian Fengmei,Fu Lanjun,He Wenfang,He Qiang,Jin Juan,Zheng Danna

Abstract

Abstract Background Exosomes from adipose-derived stem cells (ADSCs-Exos) have exhibited a therapeutic role in diabetic nephropathy (DN). Further studies are needed to investigate how ADSCs-Exos regulate oxidative stress and inflammation in high glucose-induced podocyte injury. Methods An enzyme-linked immunosorbent assay (ELISA) was used to detect cellular inflammation. Reactive oxygen species (ROS) levels were assessed using flow cytometry in podocytes with different treatments. A malondialdehyde (MDA) kit was used to evaluate the lipid peroxidation levels in podocytes and kidney tissues of mice. Western blotting and co-immunoprecipitation were performed to detect protein expression and protein-protein interactions. Results ADSCs-Exos reversed oxidative stress and inflammation in podocytes and kidney tissues of DN mice induced by high glucose levels in vitro and in vivo. Interference with heme oxygenase-1 expression could reverse the improvement effect of ADSCs-Exos on oxidative stress induced by high glucose levels. Furthermore, high glucose inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression and promoted Kelch-like ECH-associated protein 1 (Keap1) protein expression in podocytes, as well as their binding ability. As a potential target for Nrf2/Keap1 pathway regulation, FAM129B expression in podocytes is regulated by high glucose and ADSCs-Exos. Moreover, FAM129B siRNA blocked the inhibitory effect of ADSCs-Exos on intracellular ROS and MDA upregulation induced by high glucose in podocytes. Conclusion ADSCs-Exos regulate the Nrf2/Keap1 pathway to alleviate inflammation and oxidative stress in DN by targeting FAM129B, which may provide a potential therapeutic strategy for DN.

Funder

The Zhejiang Province Chinese Medicine Modernization Program

the Construction of Key Projects by Zhejiang Provincial Ministry

The Key Project of Scientific Research Foundation of Chinese Medicine

the “Pioneer” and “Leading Goose” R&D Program of Zhejiang

Huadong Medicine Joint Funds of the Zhejiang Provincial Natural Science Foundation of China

The Key project of Basic Scientific Research Operating Funds of Hangzhou Medical College

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3