Potential therapeutic effects of endothelial cells trans-differentiated from Wharton’s Jelly-derived mesenchymal stem cells on altered vascular functions in aged diabetic rat model

Author:

Motawea Shaimaa M.,Noreldin Rasha I.,Naguib Yahya M.ORCID

Abstract

Abstract Background Diabetes mellitus in elderly represents an exceptional subset in the population vulnerable to cardiovascular events. As aging, diabetes mellitus and hypertension share common pathways, an ideal treatment should possess the ability to counter more than one of, if not all, the underlying mechanisms. Stem cells emerged as a potential approach for complicated medical problems. We tested here the possible role of trans-differentiated endothelial cells (ECs) in the treatment of diabetes mellitus in old rats. Methods Mesenchymal stem cells where isolated from umbilical cord Wharton’s Jelly and induced to differentiate into endothelial like-cells using vascular endothelial growth factor-enriched media. Thirty aged male Wistar albino rats were used in the present study. Rats were divided (10/group) into: control group (18–20 months old, weighing 350–400 g, received single intraperitoneal injection as well as single intravenous injection via tail vein of the vehicles), aged diabetic group (18–20 months old, weighing 350–400 g, received single intraperitoneal injection of 50 mg/kg streptozotocin, and also received single intravenous injection of saline via tail vein), and aged diabetic + ECs group (18–20 months old, weighing 350–400 g, received single intraperitoneal injection of 50 mg/kg streptozotocin, and also received single intravenous injection of 2*106 MSC-derived ECs in 0.5 ml saline via tail vein) groups. Assessment of SBP, aortic PWV, and renal artery resistance was performed. Serum levels of ET1, ANG II, IL-6, TNF-α, MDA, ROS, and VEGF were evaluated, as well as the aortic NO tissue level and eNOS gene expression. Histopathological and immunostaining assessments of small and large vessels were also performed. Results Induction of diabetes in old rats resulted in significant increase in SBP, aortic PWV, renal artery resistance, and serum levels of ET1, ANG II, IL-6, TNF-α, MDA, ROS, and VEGF. While there was significant decrease in aortic NO tissue level and eNOS gene expression in the aged diabetic group when compared to aged control group. ECs treatment resulted in significant improvement of endothelial dysfunction, inflammation and oxidative stress. Conclusion We report here the potential therapeutic role of trans-differentiated ECs in aged diabetics. ECs demonstrated anti-inflammatory, antioxidant, gene modifying properties, significantly countered endothelial dysfunction, and improved vascular insult.

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference51 articles.

1. Yildiz O. Vascular smooth muscle and endothelial functions in aging. Ann N Y Acad Sci. 2007;1100:353–60.

2. Brandes RP, Fleming I, Busse R. Endothelial aging. Cardiovasc Res. 2005;66(2):286–94.

3. Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag. 2007;3(6):853–76.

4. Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012;2012:918267.

5. McCarron JG, Lee MD, Wilson C. The endothelium solves problems that endothelial cells do not know exist. Trends Pharmacol Sci. 2017;38(4):322–38.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3