Connections between body composition and dysregulation of islet α- and β-cells in type 2 diabetes

Author:

Miao Jia-xi,Xu Jia-ping,Wang Rui,Xu Yu-xian,Xu Feng,Wang Chun-hua,Yu Chao,Zhang Dong-mei,Su Jian-binORCID

Abstract

Abstract Background Accompanying islet α- and β-cell dysregulation in type 2 diabetes (T2D) at the microscopic scale, alterations in body composition at the macroscopic scale may affect the pathogenesis of T2D. However, the connections between body composition and islet α-cell and β-cell functions in T2D have not been thoroughly explored. Methods For this cross-sectional study, we recruited a total of 729 Chinese Han patients with T2D in a consecutive manner. Dual-energy X-ray absorptiometry (DXA) was used to measure body composition, which included total bone-free mass, total fat and lean mass, trunk fat and lean mass and limb fat and lean mass. Every patient underwent an oral glucose tolerance test to simultaneously detect glucose, C-peptide and glucagon. The indices of islet α-cell function included fasting glucagon levels and the area under the curve of glucagon after a challenge (AUCglucagon), while the indices of β-cell function included the insulin sensitivity index derived from C-peptide (ISIC-peptide) and the area under the curve of C-peptide after a challenge (AUCC-peptide). Results Among all patients, fat mass, especially trunk fat mass, was significantly correlated with ISIC-peptide and AUCC-peptide levels (r = − 0.330 and 0.317, respectively, p < 0.001), while lean mass, especially limb lean mass, was significantly correlated with fasting glucagon and AUCglucagon levels (r = − 0.196 and − 0.214, respectively, p < 0.001). Moreover, after adjusting for other relevant variables via multivariate linear regression analysis, increased trunk fat mass was independently associated with decreased ISIC-peptide (β = − 0.247, t = − 3.628, p < 0.001, partial R2 = 10.9%) and increased AUCC-peptide (β = 0.229, t = 3.581, p < 0.001, partial R2 = 8.2%), while decreased limb lean mass was independently associated with increased fasting glucagon (β = − 0.226, t = − 2.127, p = 0.034, partial R2 = 3.8%) and increased AUCglucagon (β = − 0.218, t = − 2.050, p = 0.041, partial R2 = 2.3%). Additionally, when separate analyses were performed with the same concept for both sexes, we found that increased trunk fat mass was still independently associated with decreased ISIC-peptide and increased AUCC-peptide, while decreased limb lean mass was still independently associated with increased fasting glucagon and AUCglucagon. Conclusions Increased trunk fat mass may partly account for decreased insulin sensitivity and increased insulin secretion, while decreased limb lean mass may be connected to increased fasting glucagon and postprandial glucagon secretion.

Funder

Jiangsu Commission of Health

Nantong Municipal Science and Technology Bureau

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3