Author:
Aonuma Hiroka,Iizuka-Shiota Itoe,Hoshina Tokio,Tajima Shigeru,Kato Fumihiro,Hori Seiji,Saijo Masayuki,Kanuka Hirotaka
Abstract
Abstract
Background
Monitoring both invasion of Zika virus disease into free countries and circulation in endemic countries is essential to avoid a global pandemic. However, the difficulty lies in detecting Zika virus due to the large variety of mutations in its genomic sequence. To develop a rapid and simple method with high accuracy, reverse transcription-loop-mediated isothermal amplification (RT-LAMP) was adopted for the detection of Zika virus strains derived from several countries.
Results
Common primers for RT-LAMP were designed based on the genomic sequences of two standard Zika strains: African lineage, MR-766, and Asian lineage, PRVABC59. RT-LAMP reactions using a screened primer set, targeting the NS3 region, detected both Zika virus strains. The minimum detectable quantity was 3 × 10−2 ng of virus RNA. Measurable lag of reaction times among strains was observed. The RT-LAMP method amplified the target virus sequence from the urine and serum of a patient with a travel history in the Caribbean Islands and also provided a prediction about which lineage of Zika virus strain was present.
Conclusions
The RT-LAMP method using a well-optimized primer set demonstrated high specificity and sensitivity for the detection of Zika virus strains with a variety in genomic RNA sequences. In combination with the simplicity of LAMP reaction in isothermal conditions, the optimized primer set established in this study may facilitate rapid and accurate diagnosis of Zika fever patients with virus strain information.
Funder
Japan Agency for Medical Research and Development
Foundation for the National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Public Health, Environmental and Occupational Health
Reference27 articles.
1. Dick GW, Kitchen SF, Haddow AJ. Zika Virus (I). Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46:509–20..
2. Kindhauser MK, Allen T, Frank V, Santhana RS, Dye C. Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ. 2016;94:675–686C.
3. World Health Organization. Situation report: Zika virus, microcephaly, guillain-Barré syndrome 3 NOVEMVER 2016. WHO 2016. Available at: https://apps.who.int/iris/bitstream/handle/10665/250724/zikasitrep3Nov16-eng.pdf;jsessionid=0D6727AFA8947DC75EA024B60D430910?sequence=1.
4. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:E63.
5. Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes. 2002;16:223–9.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献