Abstract
Abstract
Background
Staphylococcus aureus is a global public health issue in both community and hospital settings. Management of methicillin-resistant S. aureus (MRSA) infections are tough owing to its resistance to many antibiotics. Macrolide-lincosamide-streptogramin B (MLSB) antibiotics are commonly used for the management of MRSA. This study was aimed to determine the occurrence of inducible clindamycin- and methicillin-resistant S. aureus at a tertiary care hospital in Kathmandu, Nepal.
Methods
A total of 1027 clinical samples were processed following standard laboratory procedures and antibiotic susceptibility testing of S. aureus was performed by disc diffusion method. MRSA isolates were detected phenotypically using cefoxitin disc, and inducible clindamycin resistance was detected phenotypically using the D-zone test.
Results
Of 1027 samples, 321 (31.2%) were culture positive, of which 38 (11.8%) were S. aureus. All S. aureus isolates were susceptible to vancomycin, and 25 (67%) of S. aureus isolates were multidrug-resistant. Similarly, 15 (39.5%) of S. aureus were MRSA and 14 (36.5%) were inducible clindamycin-resistant phenotypes.
Conclusion
Inducible clindamycin and methicillin resistance were common in S. aureus. This emphasizes that the methicillin resistance test and the D-zone test should be incorporated into the routine antibiotic susceptibility testing in hospital settings.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Public Health, Environmental and Occupational Health
Reference32 articles.
1. Goudarzi M, Kobayashi N, Dadashi M, Pantůček R, Nasiri MJ, Fazeli M. Prevalence, genetic diversity, and temporary shifts of inducible clindamycin resistance Staphylococcus aureus Clones in Tehran, Iran: a molecular–epidemiological analysis from 2013 to 2018. Front Microbiol. 2020. https://doi.org/10.3389/fmicb.2020.00663.
2. Coates R, Moran J, Horsburgh MJ. Staphylococci: colonizers and pathogens of human skin. Future Microbiol. 2014;9(1):75–91.
3. World Health Organization (WHO). Antimicrobial resistance 2021. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 13 Oct 2020.
4. Jevons MP. “Celbenin”—resistant Staphylococci. BMJ. 1961;1(5219):124–5.
5. Appelbaum PC. Microbiology of antibiotic resistance in Staphylococcus aureus. Clin Infect Dis. 2007;45(Supplement 3):S165–70.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献