Phenotypic characterization of ESBL-producing urinary isolates of E. coli and Klebsiella spp. in a tertiary care children's hospital in Nepal

Author:

Pantha Santosh,Parajuli HiramaniORCID,Arjyal CharuORCID,Karki Shovana Thapa,Shrestha DhirajORCID

Abstract

Abstract Background The production of extended-spectrum beta-lactamases (ESBLs) among uropathogens, particularly E. coli and Klebsiella spp., poses a severe public health concern. This study explored the epidemiology of ESBL-producing E. coli and Klebsiella spp. isolated from urine samples obtained at a tertiary care children's hospital in Nepal. Methods A cross-sectional study was conducted from August 2016 to February 2017. A total of 745 clean catch urine samples were obtained from pediatric patients under the age of 13 and subjected to semiquantitative culture. E. coli and Klebsiella spp. were identified using standard laboratory protocols. Antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method, and ESBL producers were phenotypically identified using the combined disk method. Results Among the bacterial isolates, E. coli predominated, accounting for 139 (81.8%) positive cases. Notably, E. coli showed high susceptibility to nitrofurantoin, with 117 (84.2%) isolates being susceptible. Meanwhile, K. pneumoniae showed high susceptibility to gentamicin, with 21 (91.3%) isolates being susceptible. Of the 163 isolates of E. coli and Klebsiella spp., 62 (38.0%) were identified as multidrug-resistant (MDR), with 42 (25.8%) confirmed as phenotypic ESBL producers. Remarkably, all 41 (100%) ESBL-producing E. coli isolates were susceptible to imipenem. Conclusions The prevalence of ESBL producers among E. coli and K. pneumoniae isolates from pediatric patients underscores the importance of antimicrobial stewardship. Nitrofurantoin and gentamicin emerge as effective empirical treatment choices against these pathogens in children. However, the high rates of multidrug resistance and ESBL production highlight the necessity for routine surveillance, and early detection strategies to manage such infections effectively.

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. Leung AKC, Wong AHC, Leung AAM, Hon KL. Urinary tract infection in children. Recent Pat Inflamm Allergy Drug Discov. 2019;13(1):2–18.

2. Morello W, La Scola C, Alberici I, Montini G. Acute pyelonephritis in children. Pediatr Nephrol. 2016;31(8):1253–65.

3. Mishra SK, Acharya J, Kattel HP, Koirala J, Rijal BP, Pokhrel BM. Metallo-beta-lactamase producing gram-negative bacterial isolates. J Nepal Health Res Counc. 2012;10(22):208–13.

4. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399(10325):629–55.

5. World Health Organization (WHO). Antimicrobial resistance. 2021. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 01 Jan 2024.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3