Co-composting of pineapple leaves and chicken manure slurry

Author:

Ch'ng Huck Ywih,Ahmed Osumanu Haruna,Kassim Susilawati,Majid Nik Muhamad Ab

Abstract

Abstract Background The common practice of clearing pineapple (Ananas comosus) residues for land preparation for cultivation is by burning, an unsustainable agricultural practice that causes environmental pollution. Chicken manure produced from the poultry industry is also increasing. Inappropriate disposal or treatment can pose harm to the environment and humans. In order to reduce environmental pollution, pineapple leaves and chicken manure slurry were co-composted to obtain high-quality organic fertilizer. The shredded pineapple leaves were thoroughly mixed with chicken manure slurry, chicken feed and molasses in polystyrene boxes. Co-compost temperature readings were taken three times daily. Results Nitrogen and P concentrations increased whereas C content was reduced throughout the co-composting. The CEC increased from 32.5 to 65.6 cmol kg-1 indicating humified organic material. Humic acid and ash contents also increased from 11.3% to 24.0% and 6.7% to 15.8%, respectively. The pH of the co-compost increased from 6.14 to 7.89. The final co-compost had no foul odour, low heavy metal content and comparable amount of nutrients. Seed germination indices of phytotoxicity test were above 80% of final co-compost. This suggests that the co-compost produced was phytotoxic-free and matured. Conclusion High-quality co-compost can be produced by co-composting pineapple leaves and chicken manure slurry and thus have potential to reduce environmental pollution that could result from poorly managed agricultural wastes.

Publisher

Springer Science and Business Media LLC

Subject

Waste Management and Disposal,Agricultural and Biological Sciences (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3