Multiday acute sodium bicarbonate intake improves endurance capacity and reduces acidosis in men

Author:

Mueller Sandro Manuel,Gehrig Saskia Maria,Frese Sebastian,Wagner Carsten Alexander,Boutellier Urs,Toigo Marco

Abstract

Abstract Background The purpose was to investigate the effects of one dose of NaHCO3 per day for five consecutive days on cycling time-to-exhaustion (T lim) at ‘Critical Power’ (CP) and acid–base parameters in endurance athletes. Methods Eight trained male cyclists and triathletes completed two exercise periods in a randomized, placebo-controlled, double-blind interventional crossover investigation. Before each period, CP was determined. Afterwards, participants completed five constant-load cycling trials at CP until volitional exhaustion on five consecutive days, either after a dose of NaHCO3 (0.3 g·kg-1 body mass) or placebo (0.045 g·kg-1 body mass NaCl). Results Average T lim increased by 23.5% with NaHCO3 supplementation as compared to placebo (826.5 ± 180.1 vs. 669.0 ± 167.2 s; P = 0.001). However, there was no time effect for T lim (P = 0.375). [HCO3 -] showed a main effect for condition (NaHCO3: 32.5 ± 2.2 mmol·l-1; placebo: 26.2 ± 1.4 mmol·l-1; P < 0.001) but not for time (P = 0.835). NaHCO3 supplementation resulted in an expansion of plasma volume relative to placebo (P = 0.003). Conclusions The increase in T lim was accompanied by an increase in [HCO3 -], suggesting that acidosis might be a limiting factor for exercise at CP. Prolonged NaHCO3 supplementation did not lead to a further increase in [HCO3 -] due to the concurrent elevation in plasma volume. This may explain why T lim remained unaltered despite the prolonged NaHCO3 supplementation period. Ingestion of one single NaHCO3 dose per day before the competition during multiday competitions or tournaments might be a valuable strategy for performance enhancement. Trial registration Trial registration: ClinicalTrials.gov IdentifierNCT01621074

Publisher

Informa UK Limited

Subject

Nutrition and Dietetics,Food Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3