Vertebral rotation measurement: a summary and comparison of common radiographic and CT methods

Author:

Lam Gabrielle C,Hill Doug L,Le Lawrence H,Raso Jim V,Lou Edmond H

Abstract

Abstract Current research has provided a more comprehensive understanding of Adolescent Idiopathic Scoliosis (AIS) as a three-dimensional spinal deformity, encompassing both lateral and rotational components. Apart from quantifying curve severity using the Cobb angle, vertebral rotation has become increasingly prominent in the study of scoliosis. It demonstrates significance in both preoperative and postoperative assessment, providing better appreciation of the impact of bracing or surgical interventions. In the past, the need for computer resources, digitizers and custom software limited studies of rotation to research performed after a patient left the scoliosis clinic. With advanced technology, however, rotation measurements are now more feasible. While numerous vertebral rotation measurement methods have been developed and tested, thorough comparisons of these are still relatively unexplored. This review discusses the advantages and disadvantages of six common measurement techniques based on technology most pertinent in clinical settings: radiography (Cobb, Nash-Moe, Perdriolle and Stokes' method) and computer tomography (CT) imaging (Aaro-Dahlborn and Ho's method). Better insight into the clinical suitability of rotation measurement methods currently available is presented, along with a discussion of critical concerns that should be addressed in future studies and development of new methods.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine

Reference54 articles.

1. Cole AA, Burwell RG, Webb JK: Lateral flexion induced axial rotation in adolescent idiopathic scoliosis (AIS). Studies in Health Technology and Informatics: Research into Spinal Deformities 1. 1997, 37: 93-96.

2. Lafage V, Leborgne P, Mitulescu A, Dubousset J, Lavaste F, Skalli W: Comparison of mechanical behavior of normal and scoliotic vertebral segment: a preliminary numerical approach. Stud Health Technol Inform. 2002, 88: 340-344.

3. Farahpour N, Allard P, Labelle H, Rivard C, Duhaime M: Coupling mechanisms in the scoliotic spine. Studies in Health Technology and Informatics: Three-dimensional Analysis of Spinal Deformities. 1995, 15: 119-121.

4. Beuerlein MJ, Raso VJ, Hill DL, Moreau MJ, Mahood JK: The relationship between axial rotation and lateral bending. Studies in Health Technology and Informatics: Research into Spinal Deformities 2. 1999, 59: 105-108.

5. Heidari B, Fitzpatrick D, McCormack D, Synnott K: Correlation of an induced rotation model with the clinical categorization of scoliotic deformity – a possible platform for prediction of scoliosis progression. Stud Health Technol Inform. 2006, 123: 169-175.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3