Abstract
Abstract
Purpose
Air traffic management system is a complex adaptive and safety critical system which requires considerable attention for its modelling and verification. Currently Air traffic control (ATC) systems are heavily dependent upon human intervention at airport causing accidents and delays because of failure of communication. The purpose of this study is to develop, plan, manage and verify aircrafts movement procedures at the airport surface that prevent delays and collisions.
Methods
The airport surface is decomposed into blocks and represented by the graph relation. The state space of the system is described by identifying all the possible components of the system. The ground and local controls monitor queues of the aircrafts moving from taxiway to take-off. It is insured that once an aircraft is inserted into a queue, it is eventually removed from it after the next queue has become available. The take-off procedure is provided using graph theory and Vienna Development Method Specification Language (VDM-SL) and analyzed using VDM-SL toolbox.
Results
Formal specification of graph-based model, taxiways, aircrafts, runways and controllers is provided in static part of the model. The state space analysis describing take-off algorithms is provided by defining optimal paths and possible operations in dynamic model expediting the departure procedure. The model is developed by a series of refinements following the stepwise development approach.
Conclusions
The delays at airport surface require effective safety and guidance protocols to control air traffic at the airport. In static model, the safety criteria are described in terms of invariants over the data types carrying critical information. The safety is insured by defining pre/post conditions in description of operations for changing state space of the system. Although the proposed study is focussed more on the safety component, however, the efficiency is not ignored.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Modelling and Simulation
Reference57 articles.
1. Ali G, Khan S, Zafar NA, Ahmad F (2012) Formal modeling towards a dynamic organization of multi-agent systems using communicating X-machine and Z-notation. Indian J Sci Technol 5(7):2972–2977
2. Alves DP, Weigang L, Souza BB (2008) Reinforcement learning to support meta-level control in air traffic management. Reinforcement Learning: theory and applications. ARS Publishing, pp 357–72
3. Amy S, Philip JS, Charles B (2002) Ramp Control issues in the design of a Surface Management System. Cognitive Systems Engineering Laboratory. The Ohio State University, Columbus
4. Armano G, Javarone MA (2013) Clustering datasets by complex networks analysis. Complex adaptive systems modeling (CASM), 1(5)
5. Boulaire F, Utting M, Drogemuller R (2015) Dynamic agent composition for large-scale agent-based models. Complex adaptive systems modeling (CASM), 3(1)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献