A game-theory modeling approach to utility and strength of interactions dynamics in biomedical research social networks

Author:

Siqueiros-García J. Mario,García-Herrera Rodrigo,Hernández-Lemus Enrique,Alcalá-Corona Sergio

Abstract

Abstract Purpose Collaboration has become a cornerstone in biomedical research today. In contrast to physics which has a long history and experience in collaborative projects, biology is only recently becoming an evermore collaborative discipline. In this article we explore the effect of a collaboration network on the distribution of players having access to certain amount of resources from other players in the network and the distribution of the strength of interactions among them. We are interested in how they affect each other in the context of a network of scientific collaboration under the idea that while researchers are interested in maximizing their utilities, they also know that it is important to invest in building collaborative relationships. Methods We implemented two games played simultaneously: one for maximizing individual utility based on the iterated prisoner’s dilemma; the other, a coordination game for maximizing the connection strength between players. We tested our simulation on a biomedical research community network in México and compared the results with Erdös–Renyí, a Watts–Strogatz small-world and Barabási–Albert topologies. Results Different topologies display different global utility and global strength of interaction distributions. Moreover, the distribution of utility and strength of interaction in the researchers network is similar to that of Barabási–Albert and Watts–Strogatz topologies, respectively. Conclusions Data related to Science, from co-authorships to Scientists' movility are increasingly becoming available. We think that the readiness of these sort of data is a great opportunity for scientists interested in the social dynamics of science, especially in the context of computational social science.

Funder

CONACYT

PAPIIT

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Modelling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3