Formal model of earthquake disaster mitigation and management system

Author:

Zafar Nazir Ahmad,Afzaal Hamra

Abstract

AbstractWireless sensor and actors networks (WSANs) have become an important research area due to its large number of applications in safety, security and mission-critical systems. Natural disasters such as earthquakes and floods have distressing effects on human lives, economy and environment particularly in the developing countries due to their high population and lack of infrastructure. Earthquake is one of the major such disasters which causes a huge loss in terms of deaths, environment damages and loss of property because of its unpredictable nature. There exists much work on earthquake prediction, disaster mitigation and management but mostly is based on simulation and testing techniques which have certain limitations. Formal methods are mathematical approaches which assure correctness of systems to overcome limitations of simulation and testing techniques. That is why a formal system of earthquake disaster mitigation and management using formal methods and WSANs is proposed. Sensors and actors are deployed in the earthquakes vulnerable areas in the form of subnets which increase energy efficiency of the network as the processing becomes localized at a subnet level. Firstly, graph theory is used to represent subnet-based model which is then transformed into a formal model. Vienna Development Method-Specification Language (VDM-SL) is used to describe and prove correctness of the formal specification. The developed specification is then validated and verified through VDM-SL Toolbox facilities by analyzing the pre/post conditions and invariants over the formal system.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Modelling and Simulation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of risk factors that are dominant to the vulnerability of buildings due to earthquakes and their mitigation by the importance index method;EUREKA: Physics and Engineering;2024-09-10

2. Formal Methods for Enhanced Natural Disaster Management;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

3. IMPACT OF HIGH RADIO FREQUENCY SATELLITE OSCILLATIONS ON INITIATING EARTHQUAKES;International Journal of Research -GRANTHAALAYAH;2023-09-01

4. Disaster Management System using Wireless Sensor Network: A Review;2021 International Conference on Computational Intelligence and Computing Applications (ICCICA);2021-11-26

5. A full-view scenario model for urban waterlogging response in a big data environment;Open Geosciences;2021-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3