Energy efficiency in big data complex systems: a comprehensive survey of modern energy saving techniques

Author:

Majeed Abdul,Shah Munam Ali

Abstract

Abstract The growing need of computation and processing has led to the generation of data centers. These data centers are usually comprised of hundreds of thousands of servers and other components. This complicated arrangement of the systems lead to the adoption of complex systems. Complex systems prevail in our society as combination of lots of entities, e.g., immune system, human brain and ecosystems. The adoption and interaction of the entities is possible through nonlinear interactions. The interaction between the components of the complex system is carried out in distributed fashion. Big data which is comprised of thousands of machines is also considered to be a form of complex adaptive systems which makes use of large entities, components and nonlinear interactions with each other. The development of such a complex systems raises certain challenges. Apart from management, energy is the most concerned one which is the core discussion of this research. This paper, surveys the state of the art on modern tools, techniques, architectures and algorithms which has been proposed and deployed to achieve energy efficiency in big data over the period of 2007–2015. We group existing approaches aimed at achieving energy efficiency in the complex paradigm of big data. In this categorization, we aim to provide an easy and concise view of the underlined model adapted by each approach in the context of big data.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3