Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study

Author:

Buys Antoinette V,Van Rooy Mia-Jean,Soma Prashilla,Van Papendorp Dirk,Lipinski Boguslaw,Pretorius Etheresia

Abstract

Abstract Red blood cells (RBCs) are highly deformable and possess a robust membrane that can withstand shear force. Previous research showed that in diabetic patients, there is a changed RBC ultrastructure, where these cells are elongated and twist around spontaneously formed fibrin fibers. These changes may impact erythrocyte function. Ultrastructural analysis of RBCs in inflammatory and degenerative diseases can no longer be ignored and should form a fundamental research tool in clinical studies. Consequently, we investigated the membrane roughness and ultrastructural changes in type 2 diabetes. Atomic force microscopy (AFM) was used to study membrane roughness and we correlate this with scanning electron microscopy (SEM) to compare results of both the techniques with the RBCs of healthy individuals. We show that the combined AFM and SEM analyses of RBCs give valuable information about the disease status of patients with diabetes. Effectiveness of treatment regimes on the integrity, cell shape and roughness of RBCs may be tracked, as this cell’s health status is crucial to the overall wellness of the diabetic patient.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3