Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells

Author:

Li Hong,Zhang Xiaoyun,Guan Xiumei,Cui Xiaodong,Wang Yuliang,Chu Hairong,Cheng Min

Abstract

Abstract Background Endothelial progenitor cells (EPCs), especially late EPCs, play a critical role in endothelial maintenance and repair, and postnatal vasculogenesis. Advanced glycation end products (AGEs) have been shown to impair EPC functions, such as proliferation, migration and adhesion. However, their role in the regulation of the production of vasoactive substances in late EPCs is less well defined. Methods Passages of 3~5 EPCs, namely late EPCs, were cultured with different concentrations (0~500 μg/ml) of AGEs, and the apoptosis, adhesion and migration were subsequently determined. The release of vasoactive substances, such as stromal cell-derived factor-1 (SDF-1), nitric oxide (NO), prostaglandin I2 (PGI2), plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), and in addition the activity of superoxide dismutase (SOD), were evaluated by ELISA. At the same time, the gene and protein expressions of CXCR4 were assayed by real-time RT-PCR and western-blot. Results AGEs promoted late EPC apoptosis. Moreover, AGEs impaired late EPC migration and adhesion in a concentration-dependent manner. Accordingly, the production of SDF-1 was decreased by AGEs. Although the CXCR4 expressions of late EPCs were up-regulated for AGE concentrations of 50, 100 or 200 μg/ml, a marked decrease was observed for the higher concentration of 500 μg/ml. Furthermore, co-culturing with AGEs decreased the levels of NO, t-PA, PGI2, and the activity of SOD but up-regulated the production of PAI-1. Conclusion Our data provide evidence that AGEs play an important role in impairing late EPC functions, which could contribute to the development of vascular diseases in diabetes.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3