Author:
Chabot Andreanne,Meus Marc-Andre,Hertig Vanessa,Duquette Natacha,Calderone Angelino
Abstract
Abstract
Background
Cardiac nestin(+) cells exhibit properties of a neural progenitor/stem cell population characterized by the de novo synthesis of neurofilament-M in response to ischemic injury and 6-hydroxydopamine administration. The induction of growth associated protein 43 (GAP43) was identified as an early event of neurogenesis. The present study tested the hypothesis that the de novo synthesis of neurofilament-M by nestin(+) cells was preceded by the transient upregulation of GAP43 during the acute phase of reparative fibrosis in the infarcted male rat heart. Secondly, a seminal feature of diabetes is impaired wound healing secondary to an inadequate neurogenic response. In this regard, an additional series of experiments tested the hypothesis that the neurogenic response of cardiac nestin(+) cells was attenuated in a setting of type I diabetes.
Methods
The neurogenic response of cardiac nestin(+) cells was examined during the early phase of reparative fibrosis following permanent ligation of the left anterior descending coronary artery in the adult male rat heart. The experimental model of type I diabetes was created following a single injection of streptozotocin in adult male rats. The impact of a type I diabetic environment on the neurogenic response of cardiac nestin(+) cells was examined during myocardial infarction and following the administration of 6-hydroxydopamine.
Results
During the early phase of scar formation/healing, the density of GAP43/nestin(+) fibres innervating the peri-infarct/infarct region was significantly increased, whereas neurofilament-M/nestin(+) fibres were absent. With ongoing scar formation/healing, a temporal decrease of GAP43/nestin(+) fibre density and a concomitant increase in the density of innervating neurofilament-M/nestin(+) fibres were observed. The neurogenic response of cardiac nestin(+) cells during scar formation/healing was inhibited following the superimposition of type I diabetes. The de novo synthesis of neurofilament-M by nestin(+) cells after 6-hydroxydopamine administration was likewise attenuated in the heart of type I diabetic rats whereas the density of GAP43/nestin(+) fibres remained elevated.
Conclusion
The transient upregulation of GAP43 apparently represents a transition event during the acquisition of a neuronal-like phenotype and a type I diabetic environment attenuated the neurogenic response of cardiac nestin(+) cells to ischemia and 6-hydroxydopamine.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism
Reference37 articles.
1. Hasan W, Jama A, Donohue T, Wernli G, Onyszchuk G, Al-Hafez B, Bilgen M, Smith PG: Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res. 2006, 1124: 142-154. 10.1016/j.brainres.2006.09.054.
2. Vracko R, Thorning D, Frederickson RG: Fate of nerve fibres in necrotic, healing and healed rat myocardium. Lab Invest. 1990, 63: 490-501.
3. Zhang LQ, Laato M: Innervation of normal and hypertrophic human scars and experimental wounds in the rat. Ann Chir Gynaecol. 2001, 90 (Suppl 215): 29-32.
4. Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS: Mechanisms of cardiac nerve fibre sprouting after myocardial infarction in dogs. Circ Res. 2004, 95: 76-83. 10.1161/01.RES.0000133678.22968.e3.
5. Du X-J: Sympathoadrenergic mechanisms in functional regulation and development of cardiac hypertrophy and failure: findings from genetically engineered mice. Cardiovasc Res. 2001, 50: 443-453. 10.1016/S0008-6363(01)00244-9.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献