Differential expression of protein kinase C isoforms in coronary arteries of diabetic mice lacking the G-protein Gα11

Author:

Hoyer Dieter Paul,Korkmaz Yüksel,Grönke Sabine,Addicks Klaus,Wettschureck Nina,Offermanns Stefan,Reuter Hannes

Abstract

Abstract Background Diabetes mellitus counts as a major risk factor for developing atherosclerosis. The activation of protein kinase C (PKC) is commonly known to take a pivotal part in the pathogenesis of atherosclerosis, though the influence of specific PKC isozymes remains unclear. There is evidence from large clinical trials suggesting excessive neurohumoral stimulation, amongst other pathways leading to PKC activation, as a central mechanism in the pathogenesis of diabetic heart disease. The present study was therefore designed to determine the role of Gq-protein signalling via Gα11 in diabetes for the expression of PKC isozymes in the coronary vessels. Methods The role of Gα11 in diabetes was examined in knockout mice with global deletion of Gα11 compared to wildtype controls. An experimental type 1-diabetes was induced in both groups by injection of streptozotocin. Expression and localization of the PKC isozymes α, βII, δ, ε, and ζ was examined by quantitative immunohistochemistry. Results 8 weeks after induction of diabetes a diminished expression of PKC ε was observed in wildtype animals. This alteration was not seen in Gα11 knockout animals, however, these mice showed a diminished expression of PKCζ. Direct comparison of wildtype and knockout control animals revealed a diminished expression of PKC δ and ε in Gα11 knockout animals. Conclusion The present study shows that expression of the nPKCs δ and ε in coronary vessels is under control of the g-protein Gα11. The reduced expression of PKC ζ that we observed in coronary arteries from Gα11-knockout mice compared to wildtype controls upon induction of diabetes could reduce apoptosis and promote plaque stability. These findings suggest a mechanism that may in part underlie the therapeutic benefit of RAS inhibition on cardiovascular endpoints in diabetic patients.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3