Abstract
Abstract
Background
We aimed to characterize the protective effects and the molecular mechanisms of action of a Saccharomyces cerevisiae fermentation product (NTK) in response to a mastitis challenge. Eighteen mid-lactation multiparous Holstein cows (n = 9/group) were fed the control diet (CON) or CON supplemented with 19 g/d NTK for 45 d (phase 1, P1) and then infected in the right rear quarter with 2500 CFU of Streptococcus uberis (phase 2, P2). After 36-h, mammary gland and liver biopsies were collected and antibiotic treatment started until the end of P2 (9 d post challenge). Cows were then followed until day 75 (phase 3, P3). Milk yield (MY) and dry matter intake (DMI) were recorded daily. Milk samples for somatic cell score were collected, and rectal and udder temperature, heart and respiration rate were recorded during the challenge period (P2) together with blood samples for metabolite and immune function analyses. Data were analyzed by phase using the PROC MIXED procedure in SAS. Biopsies were used for transcriptomic analysis via RNA-sequencing, followed by pathway analysis.
Results
DMI and MY were not affected by diet in P1, but an interaction with time was recorded in P2 indicating a better recovery from the challenge in NTK compared with CON. NTK reduced rectal temperature, somatic cell score, and temperature of the infected quarter during the challenge. Transcriptome data supported these findings, as NTK supplementation upregulated mammary genes related to immune cell antibacterial function (e.g., CATHL4, NOS2), epithelial tissue protection (e.g. IL17C), and anti-inflammatory activity (e.g., ATF3, BAG3, IER3, G-CSF, GRO1, ZFAND2A). Pathway analysis indicated upregulation of tumor necrosis factor α, heat shock protein response, and p21 related pathways in the response to mastitis in NTK cows. Other pathways for detoxification and cytoprotection functions along with the tight junction pathway were also upregulated in NTK-fed cows.
Conclusions
Overall, results highlighted molecular networks involved in the protective effect of NTK prophylactic supplementation on udder health during a subclinical mastitic event.
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Biochemistry,Food Science,Biotechnology
Reference69 articles.
1. Keane OM. Symposium review: intramammary infections-major pathogens and strain-associated complexity. J Dairy Sci. 2019;102(5):4713–26.
2. NAHMS. Dairy 2014: milk quality, milking procedures, and mastitis on U.S. dairies. Fort Collins: USDA–APHIS–VS–CEAH–NAHMS; 2014.
3. NAHMS. Dairy 2007: part I: reference of dairy cattle health and management practices in the United States. Fort Collin: USDA-APHIS-VS, CEAH; 2007.
4. NAHMS. Dairy 2002: part I: reference of dairy health and management in the United States. Fort Collins: USDA-APHIS:VS,CEAH; 2002.
5. Aghamohammadi M, Haine D, Kelton DF, Barkema HW, Hogeveen H, Keefe GP, et al. Herd-level mastitis-associated costs on Canadian dairy farms. Front Vet Sci. 2018;5:100.