Abstract
Abstract
Background
To advance the use of embryo vitrification in veterinary practice, we developed a system in which embryo vitrification, warming and dilution can be performed within a straw. Ovine in vitro produced embryos (IVEP) were vitrified at either early (EBs: n = 74) or fully expanded blastocyst stage (FEBs: n = 195), using a new device named “E.Vit”, composed by a 0.25-mL straw with a 50-μm pore polycarbonate grid at one end. Embryos at each stage (EBs and FEBs) were vitrified by either Two-step (TS) or Multi-step (MS; 6 different concentrations of vitrification solutions) protocol. Non-vitrified embryos (n = 102) were maintained in in vitro culture as a control. Warming consisted of placing the straws directly into 1.5 mL tubes containing a TCM-199 solution with three decreasing concentrations of sucrose. Blastocyst re-expansion, embryo survival and hatching rate were evaluated at 2, 24 and 48 h post warming. The number of apoptotic cells was determined by TUNEL assay.
Results
Blastocyst re-expansion (2 h) after warming was higher (P < 0.05) in FEBs group, vitrified with the MS and TS methods (77.90% and 71.25%, respectively) compared with the EBs group (MS: 59.38% and TS: 48.50%, respectively). Survival rates of vitrified FEBs after 24 h IVC were higher (P < 0.001) in both methods (MS and TS) than vitrified EBs (MS: 56.25%; TS: 42.42%) and was higher (P < 0.05) in the MS method (94.19%) compared with those in TS (83.75%). After 48 h of culture the hatching rate for FEBs vitrified in MS system (91.86%) was similar to control (91.89%), but higher than FEB TS (77.5%) and EBs vitrified in MS (37.5%) and TS (33.33%). Number of apoptotic cells were higher in EBs, irrespective of the system used, compared to FEBs. The number of apoptotic cells in FEBs vitrified with MS was comparable to the control.
Conclusions
A high survival rate of IVP embryos can be achieved by the new “E.Vit” device with hatching rates in vitro comparable with control fresh embryos. This method has the potential for use in direct embryo transfer in field conditions.
Funder
Regione Autonoma della Sardegna
Bando competitivo Fondazione di Sardegna – 2016
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Biochemistry,Food Science,Biotechnology
Reference43 articles.
1. Loi P, Ptak G, Dattena M, Ledda S, Naitana S, Cappai P. Embryo transfer and related technologies in sheep reproduction. Reprod Nutr Dev. 1998;38:615–28.
2. Ledda S, Gonzalez-Bulnes A. ET-Technologies in Small Ruminants. In: Niemann H, Wrenzycki C, editors. Animal Biotechnology 1. Cham, First Online, 07 August: Springer; 2018.
3. Paramio MT, Izquierdo D. Current status of in vitro embryo production in sheep and goats. Reprod Domest Anim. 2014;4:37–48.
4. Baril G, Traldi AL, Cognié Y, Leboeuf B, Beckers JF, Mermillod P. Successful direct transfer of vitrified sheep embryos. Theriogenology. 2001;56:299–305.
5. Dattena M, Accardo C, Pilichi S, Isachenko V, Mara L, Chessa B, et al. Comparison of different vitrification protocols on viability after transfer of ovine blastocysts in vitro produced and in vivo derived. Theriogenology. 2004;62:481–93.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献