Restored intestinal integrity, nutrients transporters, energy metabolism, antioxidative capacity and decreased harmful microbiota were associated with IUGR piglet's catch-up growth before weanling

Author:

Cui Chang,Wu Caichi,Wang Jun,Ma Ziwei,Zheng Xiaoyu,Zhu Pengwei,Wang Nuan,Zhu Yuhua,Guan Wutai,Chen Fang

Abstract

Abstract Background Intrauterine growth restriction (IUGR) is a major inducer of higher morbidity and mortality in the pig industry and catch-up growth (CUG) before weanling could significantly restore this negative influence. But there was limited knowledge about the underlying mechanism of CUG occurrence. Methods Eighty litters of newborn piglets were divided into normal birth weight (NBW) and IUGR groups according to birth weight. At 26 d, those piglets with IUGR but over average body weight of eighty litters of weaned piglets were considered as CUG, and the piglets with IUGR still below average body weight were considered as NCUG. This study was conducted to systemically compare the intestinal difference among NBW, CUG and NCUG weaned piglets considering the crucial role of the intestine for piglet growth. Results The results indicated that the mRNA expression of nutrients (amino acids, glucose, and fatty acids) transporters, and mitochondrial electron transport chain (ETC) I were upregulated in CUG piglets’ gut with improved morphology compared with those NCUG, as well as the ratio of P-AMPK/AMPK protein expression which is the indicator of energy metabolism. Meanwhile, CUG piglet’s gut showed higher antioxidative capacity with increased SOD and GSH-Px activity, decreased MDA levels, as well as higher mRNA expressions of Nrf2, Keap1, SOD, and GSH-Px. Furthermore, inflammatory parameters including TNF-α, IL-1β, IL-6, and IL-12 factors, and the activation of MAPK and NF-κB signaling pathways were significantly elevated in the NCUG intestine, while the protein expression of ZO-1, Occludin and Claudin-1 was reduced. The alpha diversity of fecal microbiota was higher in CUG piglets in contrast with NCUG piglets, and the increased beneficial bacteria and decreased pathogenic bacteria was also observed in CUG piglets. Conclusions CUG piglet’s intestine showed comprehensive restoration including higher nutrients transport, energy metabolism, antioxidant capacity, and intestinal physical barrier, while lower oxidative stress, inflammatory response, and pathogenic microbiota.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3