Metabolomic fingerprinting of pig seminal plasma identifies in vivo fertility biomarkers

Author:

Mateo-Otero Yentel,Fernández-López Pol,Delgado-Bermúdez Ariadna,Nolis Pau,Roca Jordi,Miró Jordi,Barranco Isabel,Yeste MarcORCID

Abstract

Abstract Background Metabolomic approaches, which include the study of low molecular weight molecules, are an emerging -omics technology useful for identification of biomarkers. In this field, nuclear magnetic resonance (NMR) spectroscopy has already been used to uncover (in) fertility biomarkers in the seminal plasma (SP) of several mammalian species. However, NMR studies profiling the porcine SP metabolome to uncover in vivo fertility biomarkers are yet to be carried out. Thus, this study aimed to evaluate the putative relationship between SP-metabolites and in vivo fertility outcomes. To this end, 24 entire ejaculates (three ejaculates per boar) were collected from artificial insemination (AI)-boars throughout a year (one ejaculate every 4 months). Immediately after collection, ejaculates were centrifuged to obtain SP-samples, which were stored for subsequent metabolomic analysis by NMR spectroscopy. Fertility outcomes from 1525 inseminations were recorded over a year, including farrowing rate, litter size, stillbirths per litter and the duration of pregnancy. Results A total of 24 metabolites were identified and quantified in all SP-samples. Receiver operating characteristic (ROC) curve analysis showed that lactate levels in SP had discriminative capacity for farrowing rate (area under the curve [AUC] = 0.764) while carnitine (AUC = 0.847), hypotaurine (AUC = 0.819), sn-glycero-3-phosphocholine (AUC = 0.833), glutamate (AUC = 0.799) and glucose (AUC = 0.750) showed it for litter size. Similarly, citrate (AUC = 0.743), creatine (AUC = 0.812), phenylalanine (AUC = 0.750), tyrosine (AUC = 0.753) and malonate (AUC = 0.868) levels had discriminative capacity for stillbirths per litter; and malonate (AUC = 0.767) and fumarate (AUC = 0.868) levels for gestation length. Conclusions The assessment of selected SP-metabolites in ejaculates through NMR spectroscopy could be considered as a promising non-invasive tool to predict in vivo fertility outcomes in pigs. Moreover, supplementing AI-doses with specific metabolites should also be envisaged as a way to improve their fertility potential.

Funder

Ministerio de Ciencia, Innovación y Universidades

Fundación Séneca

Agència de Gestió d’Ajuts Universitaris i de Recerca

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3