Author:
Menci Ruggero,Khelil-Arfa Hajer,Blanchard Alexandra,Biondi Luisa,Bella Marco,Priolo Alessandro,Luciano Giuseppe,Natalello Antonio
Abstract
Abstract
Background
Magnolia bark extract (MBE) is a natural supplement with antioxidant, anti-inflammatory, and antimicrobial activities. Its properties suggest that the dietary supplementation in livestock could improve the quality of products. Therefore, the aim of this study was to investigate, for the first time, the effect of dietary MBE supplementation (0.33 mg/kg) in finishing pigs on the oxidative stability of meat. Oxidative stability is of paramount importance for pork, as it affects storage, retail, and consumer acceptance. For the purpose, the fatty acid profile, cholesterol, fat-soluble vitamins, antioxidant enzymes (catalase, glutathione peroxidase, and superoxide dismutase), non-enzymatic antioxidant capacity (TEAC, FRAP, and Folin-Ciocalteu assays), color stability, and lipid stability of pork were assessed.
Results
Concerning carcass characteristics, dietary MBE did not affect cold carcass yield, but reduced (P = 0.040) the chilling weight loss. The meat from pigs fed MBE had a lower (P = 0.031) lightness index than the control meat. No effect on intramuscular fat, cholesterol, and fatty acid profile was observed. Dietary MBE did not affect the content of vitamin E (α-tocopherol and γ-tocopherol) in pork, whereas it reduced (P = 0.021) the retinol content. The catalase activity was 18% higher (P = 0.008) in the meat from pigs fed MBE compared with the control group. The MBE supplementation reduced (P = 0.039) by 30% the thiobarbituric acid reactive substances (TBARS) in raw pork over 6 d of aerobic refrigerated storage. Instead, no effect on lipid oxidation was observed in cooked pork. Last, the meat from pigs fed MBE reduced Fe3+-ascorbate catalyzed lipid oxidation in muscle homogenates, with a lower (P = 0.034) TBARS value than the control group after 60 min of incubation.
Conclusions
Dietary MBE supplementation in finishing pigs delayed the lipid oxidation in raw meat. This effect was combined with an increased catalase concentration. These results suggest that dietary MBE could have implications for improving the shelf-life of pork.
Funder
Università di Catania
Ministero dell’Istruzione, dell’Università e della Ricerca
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Biochemistry,Food Science,Biotechnology
Reference56 articles.
1. Katt F, Meixner O. A systematic review of drivers influencing consumer willingness to pay for organic food. Trends Food Sci Technol. 2020;100:374–88. https://doi.org/10.1016/j.tifs.2020.04.029.
2. Grunert KG, Sonntag WI, Glanz-Chanos V, Forum S. Consumer interest in environmental impact, safety, health and animal welfare aspects of modern pig production: results of a cross-national choice experiment. Meat Sci. 2018;137:123–9. https://doi.org/10.1016/j.meatsci.2017.11.022.
3. Commission Implementing Regulation (EU) 2019/2164 of 17 December 2019 amending Regulation (EC) No 889/2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. http://data.europa.eu/eli/reg_impl/2019/2164/oj.
4. Niu L, Hou Y, Jiang M, Bai G. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. J Ethnopharmacol. 2021;281:114524. https://doi.org/10.1016/j.jep.2021.114524.
5. Lee Y-J, Lee YM, Lee C-K, Jung JK, Han SB, Hong JT. Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther. 2011;130(2):157–76. https://doi.org/10.1016/j.pharmthera.2011.01.010.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献